大语言模型LLM资源优化与部署:知识蒸馏与模型精简(LLM系列17)

本文探讨了知识蒸馏技术在大语言模型LLM资源优化与部署中的应用,通过ChatGLM3-6B向DistilBERT的知识迁移,实现模型压缩和性能优化。介绍了知识蒸馏的基本原理,实践中的策略,以及蒸馏后小型模型的性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大语言模型LLM资源优化与部署:知识蒸馏与模型精简(LLM系列17)

以ChatGLM3-6B向小型模型的知识迁移为例,基于DistilBERT的实践探索

引言

知识蒸馏技术是一种从大型复杂模型中提炼关键知识,并将其灌输给小型模型的方法,以此实现模型压缩与性能优化。在自然语言处理领域,大型语言模型如ChatGLM3-6B以其卓越的性能表现和广泛的应用前景备受关注。然而,此类模型庞大的参数量和高昂的计算需求,使得它们在资源受限的场景下难以部署和使用。与此同时,小型模型因其轻便易用的特性,在实际应用中有强烈的需求,但其性能往往受限于模型容量。知识蒸馏作为连接大型模型与小型模型的桥梁,通过模拟大型模型的行为和决策过程,使小型模型能够继承其知识和能力,从而在性能与资源占用之间取得平衡。

知识蒸馏基本原理

知识蒸馏源于Hinton等人提出的“教师-学生”学习框架,其基本理念是让小型模型(学生模型)模仿大型模型(教师模型)的输出概率分布,从而捕获教师模型的内在知识。在这个过程中,大型模型产生的“软标签”(softmax概率分布)被用作学生模型的学习目标,而非传统的硬标签(one-hot编

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

North_D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值