文章目录
大语言模型LLM资源优化与部署:知识蒸馏与模型精简(LLM系列17)
以ChatGLM3-6B向小型模型的知识迁移为例,基于DistilBERT的实践探索
引言
知识蒸馏技术是一种从大型复杂模型中提炼关键知识,并将其灌输给小型模型的方法,以此实现模型压缩与性能优化。在自然语言处理领域,大型语言模型如ChatGLM3-6B以其卓越的性能表现和广泛的应用前景备受关注。然而,此类模型庞大的参数量和高昂的计算需求,使得它们在资源受限的场景下难以部署和使用。与此同时,小型模型因其轻便易用的特性,在实际应用中有强烈的需求,但其性能往往受限于模型容量。知识蒸馏作为连接大型模型与小型模型的桥梁,通过模拟大型模型的行为和决策过程,使小型模型能够继承其知识和能力,从而在性能与资源占用之间取得平衡。
知识蒸馏基本原理
知识蒸馏源于Hinton等人提出的“教师-学生”学习框架,其基本理念是让小型模型(学生模型)模仿大型模型(教师模型)的输出概率分布,从而捕获教师模型的内在知识。在这个过程中,大型模型产生的“软标签”(softmax概率分布)被用作学生模型的学习目标,而非传统的硬标签(one-hot编