书生·浦语--(五)LMDeploy 量化部署 LLM-VLM 实践(基础作业)

LLM微调是一个将预训练模型在较小、特定数据集上进一步训练的过程,目的是精炼模型的能力,提高其在特定任务或领域上的性能。

模型部署
1. 配置
LMDeploy运行环境

1.1创建开发机
    在InternStudio平台,创建开发机

1.2创建conda环境
    点击左上角图标,切换为终端(Terminal)模式

    InternStudio上提供了快速创建conda环境的方法。打开命令行终端,创建一个名为lmdeploy的环境:

studio-conda -t lmdeploy -o pytorch-2.1.2

按照上述步骤之后即可得到预训练好的internlm2-chat-1_8b模型。

2、LMdeploy模型对话
Transformer库是Huggingface社区推出的用于运行HF模型的官方库。

首先通过Transformer库运行模型。

然后通过LMdeploy的方式部署并运行模型。

三、LMdeploy模型量化
模型的量化主要包括 KV8量化和W4A16量化。总的来说,量化是一种以参数或计算中间结果精度下降换空间节省(以及同时带来的性能提升)的策略。

正式介绍 LM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值