LLM微调是一个将预训练模型在较小、特定数据集上进一步训练的过程,目的是精炼模型的能力,提高其在特定任务或领域上的性能。
模型部署
1. 配置LMDeploy运行环境
1.1创建开发机
在InternStudio平台,创建开发机
1.2创建conda环境
点击左上角图标,切换为终端(Terminal)模式
InternStudio上提供了快速创建conda环境的方法。打开命令行终端,创建一个名为lmdeploy的环境:
studio-conda -t lmdeploy -o pytorch-2.1.2
按照上述步骤之后即可得到预训练好的internlm2-chat-1_8b模型。
2、LMdeploy模型对话
Transformer库是Huggingface社区推出的用于运行HF模型的官方库。
首先通过Transformer库运行模型。

然后通过LMdeploy的方式部署并运行模型。

三、LMdeploy模型量化
模型的量化主要包括 KV8量化和W4A16量化。总的来说,量化是一种以参数或计算中间结果精度下降换空间节省(以及同时带来的性能提升)的策略。
正式介绍 LM

最低0.47元/天 解锁文章
1023

被折叠的 条评论
为什么被折叠?



