YOLO v2目标检测详解三 去除无效数据

博客详细解释了在YOLO v2目标检测中,如何处理在填充物体数量时引入的无效数据,这些数据表现为(0,0,0,0)坐标。内容提到需要移除这些无效框,并且在计算IoU时排除部分无效的IoU。通过使用特定的tensor表示法,只保留有效框与目标框的IoU计算。" 89183511,5644602,Android操作本地JSON文件教程,"['Android开发', '数据处理', '文件系统', 'JSON']
摘要由CSDN通过智能技术生成

在从文件读入标注的数据时,会把物体数量向物体最多的那张图补齐,补齐的时候会添加进不少无效的框,最后计算的时候需要将这部分无效数据去除,添加的无效数据为(0,0,0,0),现在需要将这部分数据去掉

#把添加的无效数据去除
def gt_mask_from_gts(gts):
    gt_stk = gts.view(-1, 4)
    invalid_gt = torch.Tensor([0, 0, 0, 0])
    if CAN_USE_GPU:
        invalid_gt = invalid_gt.cuda()
    gt_mask = torch.zeros(size=(gt_stk.shape[0], ))
    gt_mask[gt_stk.eq(invalid_gt.view(1, 4)).sum(1) != 4] = 1
    return gt_mask.view(gts.shape[0], gts.shape[1])

部分无效的iou也需要同样去掉

如图所示,红色框的中心是在第二个黑色框中,那么第一个黑色的框对应的anchor是不需要和红色的框计算iou的,那么只需要保留第二个anchor和红色框的iou,那么可以用对应的tensor来表示,如:0,0,0,0,0,1,1,1,1,1就表示取第二个框对应的anchor和红色框计算iou

def range_mask_from_gts(gts, w_n, anchor_num, cell_anchor_n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值