【OpenCV图像处理入门学习教程二】不同阈值二值化图像

这篇博客介绍了OpenCV图像处理中的二值化概念,并详细讲解了基于OpenCV3.3的可调阈值图像二值化方法,包括cvThreshold()函数的使用。此外,还提及了cvAdaptiveThreshold()函数和cvCanny()函数在二值化中的应用,特别是cvAdaptiveThreshold()的自适应全局阈值特性。
摘要由CSDN通过智能技术生成

OpenCV图像处理入门学习教程系列,上一篇第一篇:OpenCV2 + 3的安装教程与VS2013的开发环境配置 + JPEG压缩源码分析与取反运算修改


图像二值化介绍

图像二值化是图像预处理中非常重要的一部分。图像二值化简单来说就是将256个亮度等级的灰度图像通过适当的阈值选取而获得仍然可以反映图像整体和局部特征的二值化图像。
在数字图像处理中,二值图像占有非常重要的地位,首先,图像的二值化有利于图像的进一步处理,使图像变得简单,而且数据量减小,能凸显出感兴趣的目标的轮廓。其次,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像。

一、OpenCV中的图像二值化

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值