Gradient-based Hyperparameter Optimization through Reversible Learning

摘要

  因为超参数的梯度信息很难获得,所以调整超参数很难。我们在整个训练集上计算了对于所有超参数的交叉检验的精确参数。这使得我们可以优化各种超参数,包括训练步长、动量、初始参数的分布、网络结构、正则化形式。我们的计算恰好颠覆了基于动量的随机梯度下降法的动力。

简介

  机器学习到处都是超参数,需要通过例如l1l2等正则化来限制模型的复杂度。还有步长、动量衰减、初始条件等,都很难决定。
  现有的方法通过验证集来确定好的参数达到最好结果,但是也不能一下子调整10~20个参数。
  为何不考虑梯度呢,逆向差分使得梯度的计算消耗接近初始目标函数的计算消耗。这种方法一般用于元素参数的计算。计算超参数的梯度的困难在于验证集损失函数的计算需要元素级别的内部循环,这使得初始的基于内存消耗的梯度计算难以实现。第2部分会来解决这个问题,所用方法也是本文的主要方法。
  得到超参数的梯度为通往天堂之路打开了一扇窗……我们不是尽量从模型中消除超参数,而是利用并丰富模型中的超参数。就如高维的元素参数使得模型更灵活一样,高维的超参数使得我们的模型类别、正则化方法、训练方法更加灵活。

超梯度

  逆向差分(也就是算法)在超参数的梯度计算中受制于内存消耗过大而难以实施。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
gradient-based neural dag learning(梯度优化的神经有向无环图学习)是一种用于构建和训练神经网络结构的方法。它通过学习网络的拓扑结构,即神经网络的连接方式和层次结构,来优化网络性能。 传统的神经网络结构通常是由人工设计的,而在gradient-based neural dag learning中,网络的结构可以通过梯度下降算法进行优化。该方法的核心思想是在训练过程中不仅学习网络的权重参数,还学习网络的拓扑结构。 在gradient-based neural dag learning中,网络的结构可以表示为有向无环图(DAG),图中的节点表示网络中的层或操作,边表示连接。我们可以用一组变量来表示每个节点的状态和连接关系,通过优化这些变量,实现网络结构的优化。 具体地,gradient-based neural dag learning通过计算网络中每个操作或层对目标函数的梯度来优化变量。在梯度下降的过程中,网络的结构随着反向传播算法的迭代而逐渐优化。这种方法可以使得网络自动完成结构的搜索和选择,提高了网络的表达能力和性能。 由于gradient-based neural dag learning可以自动进行网络结构的学习和优化,它可以减轻人工设计网络结构的负担,并且在处理复杂任务时能够获得更好的性能。然而,由于网络结构的搜索空间非常大,优化过程可能会很复杂,需要大量的计算资源和时间。 总之,gradient-based neural dag learning是一种通过梯度下降优化网络结构的方法,能够自动学习和优化神经网络的拓扑结构,提高网络性能。这种方法在深度学习领域有着广泛的应用潜力,并且为网络的设计和训练带来了新的思路和方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值