《3D Diffusion Policy》论文阅读

文章介绍了一种名为DP3的3D扩散策略,它结合了3D视觉表示和高效点云处理,仅需少量人类示范就能在模拟和真实环境中掌握复杂机器人技能。DP3在大量实验中展示了卓越的泛化能力和学习效率,尤其在真实机器人任务中表现优秀。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文仅是个人对该文章的阅读总结,并不能全篇概括作者的精华,还需大家详细阅读原文

---------------------------------------------------------------------------------------------------------------------------------

摘要

问题:模仿学习为教授机器人灵巧技能提供了一种高效途径,但是学习复杂的、具有普适性的技能通常需要大量的人类示范

解决:3D扩散策略(DP3)将3D视觉表示的强大之处融入到扩散策略中,这是一类有条件的动作生成模型。

核心:利用高效的点编码器从稀疏点云中提取紧凑的3D视觉表示。

取得成果:

(1)在涉及 72 个模拟任务的实验中,DP3仅使用 10 个示范就成功处理了大多数任务,并且相对于基线方法取得了 55.3% 的相对改进。

(2)在 4 个真实机器人任务中,DP3仅使用每个任务 40 个示范就展示了精确控制,成功率高达 85%,并且在空间、视点、外观和实例等多个方面展现了出色的泛化能力。

(3)DP3很少违反安全要求。

方法

问题定义:

                视觉运动策略 π : O  →  A

                视觉观察 o ∈ O 

                动作 a ∈ A

DP3组成:

(1)Perception:DP3利用点云数据感知环境,并利用高效的点编码器将这些视觉观测结果处理成视觉特征;

(2)Decision:DP3利用了expressive Diffusion Policy 作为动作生成的支干,该策略根据我们的3D视觉特征生成动作序列。

A Motivating Example

证明DP3的泛化能力:

        目标:让手持器准确的到达指定目标点

        为了评估模仿学习算法不仅适应训练数据的有效性,还要泛化到新场景的能力,在3D空间中可视化了训练点和成功评估点

仅用五个训练点,DP3就能到达分布在3D空间中的点,展示了DP3在数据有限的情况下的优越泛化能力和效率。

Perception

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值