Abstract
模仿学习为教机器人灵巧技能提供了一种有效的方法;然而,稳健而普遍地学习复杂技能通常需要大量的人类演示。为了解决这个具有挑战性的问题,我们提出了3d diffusion policy(dp3),这是一种新的视觉模仿学习方法,将3d视觉表示的力量融入到一类条件动作生成模型diffusion policies中。dp3的核心设计是利用紧凑的3d视觉表示,通过高效的点编码器从稀疏点云中提取。在我们涉及72个模拟任务的实验中,dp3仅需10次演示即可成功处理大多数任务,并以24.2%的相对改进超过了基线。在4个真实的机器人任务中,dp3展示了精确控制,成功率高达85%,每个任务只演示了40次,并在空间、视点、外观和实例等多个方面表现出出色的泛化能力。有趣的是,在真实的机器人实验中,dp3很少违反安全要求,而基线方法经常违反,需要人为干预。我们的广泛评估强调了3d表示在现实世界机器人学习中的至关重要性。
I. INTRODUCTION
模仿学习提供了一种有效的方法来教机器人广泛的运动技能,如抓握[68,60,82]、腿部运动[40]、灵巧操作[1,16]、人形运动操作[54]和移动操作[57,12]。视觉模仿学习采用高维视觉观察,如图像或深度图,简化了对特定任务状态估计的需求,从而获得了普及[10,60,82,11,20]。
然而,视觉模仿学习的普遍性是以大量演示为代价的[16,10,11]。例如,state-of-the-art方法diffusion policy[10]需要为每个真实世界的任务收集100到200个人类收集的演示。为了收集所需的大量演示,由于其长期性和易发生故障的过程,整个数据收集过程可能会持续几天。一种解决方案是在线学习[16],其中policy通过与环境的交互和从专家演示中学习到的奖励功能而不断发展。然而,现实世界场景中的在线学习也带来了自己的挑战,例如安全考虑、自动重置的必要性、人为干预和额外的机器人硬件成本。因此,如何使(离线)模仿学习算法能够在尽可能少的演示下学习稳健和可推广的技能是一个基本问题,特别是对于实际的机器人学习。
为了解决这个具有挑战性的问题,我们引入了3d扩散policy(dp3),这是一种简单而有效的视觉模仿学习算法,将3d视觉表示的优势与扩散policies相结合。dp3使用简单高效的mlp编码器将稀疏采样的点云编码为紧凑的3d表示。随后,dp3根据这种紧凑的3d表示和机器人姿态,将随机噪声降噪为连贯的动作序列。这种集成不仅利用了3d模态固有的空间理解能力,还利用了扩散模型的表现力。
为了全面评估dp3,我们开发了一个模拟基准,包括来自7个领域的72个不同的机器人任务,以及4个现实世界的任务,包括挑战可变形物体的灵巧操作。我们广泛的实验表明,尽管dp3在概念上很简单,但它比基于2d的扩散policies和其他基线具有几个显著的优势:
1) 效率和有效性。DP3不仅实现了更高的精度,而且通过更少的演示和更少的训练步骤实现了这一点。
2) 可推广性。DP3的3D特性促进了跨多个方面的泛化能力:空间、视点、实例和外观。
3) 安全部署。在我们的现实世界实验中,一个有趣的观察是,DP3在现实世界的任务中很少发出不稳定的命令,这与基线方法不同,基线方法通常会做出并表现出意想不到的行为,对机器人硬件造成潜在的损害。
我们对3d视觉表示进行了多次分析。有趣的是,我们观察到,虽然其他基线方法,如bcrnn[35]和ibc[11],受益于3d表示的结合,但它们并没有实现与dp3相当的增强。此外,dp3始终优于其他3d模态,包括深度和体素表示,并优于pointnext[46]和point Transformer[84]等其他点编码器。这些消融研究强调,dp3的成功不仅归功于3d视觉表示的使用,还归功于其精心设计。
总之,我们的贡献有四个方面:
1) 我们提出了3d扩散policy(dp3)