现在在学线性泛函分析,对于对偶基我一直理解不了,所以就尝试着将前后的概念顺起来,对对偶基进行理解。
先来个变量提醒
Φ
\varPhi
Φ代表
R
\boldsymbol{R}
R或者
C
\boldsymbol{C}
C (前者是实数集,后者是复数集)。
一、线性空间
线性空间,大家能最容易理解的就是一根线(可以说是一维的线性空间),你拉长,剪短都还是一根线(也就是保持线性这个特性),所以这根线也就是一个线性空间。对于一根线,我们可以拉伸剪短(加法和减法运算),多根线凑成一根线(数乘运算)。所以从以上可以看出来线性空间应该具有的一些性质:
设
X
X
X为非空集合,其中规定了两种运算:加法和数乘(简单点说,就是凑绳子)
(I)加法
∀
x
,
y
∈
X
,
∃
u
∈
X
,称为
x
,
y
的和,记为
x
+
y
=
u
\forall x,y\in X\text{,}\exists u\in X\text{,称为}x,y\text{的和,记为}x+y=u
∀x,y∈X,∃u∈X,称为x,y的和,记为x+y=u
满足:
(1)交换律:
x
+
y
=
y
+
x
x+y=y+x
x+y=y+x
(直观的讲就是你把绑在一起的绳子,改变前后顺序他还是原来的绳子)
(2)结合律:
x
+
(
y
+
z
)
=
(
x
+
y
)
+
z
x+\left( y+z \right) =\left( x+y \right) +z
x+(y+z)=(x+y)+z
(三条绳子,你先绑哪两个都一样);
(3)存在零元:
ϑ ∈ X ,对 ∀ x ∈ X ,有 x + ϑ = x \vartheta \in X\text{,对}\forall x\in X\text{,有}x+\vartheta =x ϑ∈X,对∀x∈X,有x+ϑ=x
(4)存在负元:
∃ − x ,使得 x + ( − x ) = ϑ \exists -x\text{,使得}x+\left( -x \right) =\vartheta ∃−x,使得x+(−x)=ϑ
(II)数乘
∀ x ∈ X , α ∈ Φ , ∃ v ∈ X ,使得 α x = v ,对 ∀ y ∈ X , β ∈ Φ ,满足: \forall x\in X\text{,}\alpha \in \varPhi \text{,}\exists v\in X\text{,使得}\alpha x=v\text{,对}\forall y\in X\text{,}\beta \in \varPhi \text{,满足:} ∀x∈X,α∈Φ,∃v∈X,使得αx=v,对∀y∈X,β∈Φ,满足:
(1)结合律:
α ( β x ) = ( α β ) x \alpha \left( \beta x \right) =\left( \alpha \beta \right) x α(βx)=(αβ)x
(2)存在单位元:
1 ∈ Φ ,使得 ∀ x ∈ X ,有 1 x = x 1\in \varPhi \text{,使得}\forall x\in X\text{,有}1x=x 1∈Φ,使得∀x∈X,有1x=x
(3)分配律1:
α ( x + y ) = α x + α y \alpha \left( x+y \right) =\alpha x+\alpha y α(x+y)=αx+αy
(3)分配律2:
(
α
+
β
)
x
=
α
x
+
β
x
\left( \alpha +\beta \right) x=\alpha x+\beta x
(α+β)x=αx+βx
则称
X
X
X为
Φ
\varPhi
Φ上的线性空间,其中的元素称为向量。当
Φ
=
R
\varPhi =\boldsymbol{R}
Φ=R时,称其为实线性空间;
Φ
=
C
\varPhi =\boldsymbol{C}
Φ=C时,称为复线性空间。注意:其中的元素称为向量,也就是说这个时候,向量的定义已经从初中那个带箭头的直线或者坐标拓展了,拓展到任意一个概念,可以是函数、坐标这是好理解的,甚至可以是馒头,桌子,椅子,凳子,只要你可以规定运算,满足以上的性质,就可以构成一个线性空间。
二、赋范线性空间
一个线性空间,只给了这些,是无法比较远近的。所以为了比较向量的长短和点的远近,我们给出了范数的概念:
(I)定义:
设 X X X是线性空间,若 p : X ↦ R p:X\mapsto \boldsymbol{R} p:X↦R ,使得对 ∀ x , y ∈ X , α ∈ Φ \forall x,y\in X,\alpha \in \varPhi ∀x,y∈X,α∈Φ有:
(1)正定性:
p ( x ) ⩾ 0 , p ( x ) = 0 ,当且仅当 x = 0 p\left( x \right) \geqslant 0\text{,}p\left( x \right) =0\text{,当且仅当} x=0 p(x)⩾0,p(x)=0,当且仅当x=0
(2)正齐次性:
p ( α x ) = ∣ α ∣ p ( x ) p\left( \alpha x \right) =\left| \alpha \right|p\left( x \right) p(αx)=∣α∣p(x)
(3)三角不等式:
p
(
x
+
y
)
⩽
p
(
x
)
+
p
(
y
)
p\left( x+y \right) \leqslant p\left( x \right) +p\left( y \right)
p(x+y)⩽p(x)+p(y)
则称其为
X
X
X上的范数,记为
p
(
x
)
=
∥
x
∥
p\left( x \right) =\left\| x \right\|
p(x)=∥x∥,并记
(
X
,
∥
⋅
∥
)
\left( X,\left\| \cdot \right\| \right)
(X,∥⋅∥)是赋范线性空间,在不至于混淆时记为
X
X
X。
(II)单位向量:
若
∥
x
∥
=
1
\left\| x \right\| =1
∥x∥=1
范数其实只是规定了距离的计算方法,就像绳子空间中,规定了计量方法一样,每个人的计量方式不一样,得到的数据也就不同。就像有的人喜欢尺、丈;有些人喜欢米、厘米这样子的计量单位,长度还是那个长度,但是用不同的单位表示出来的数据就不一样了,这就是空间中的范数。
三、有界线性空间
(I)有界线性泛函:
下面对线性泛函进行介绍,这是对偶基形成过程中重要的一环,先介绍线性泛函的定义:
设
X
X
X是范线性空间:
(1)称
f
:
D
(
f
)
⊂
X
↦
Φ
f:\boldsymbol{D}\left( f \right) \subset X\mapsto \varPhi
f:D(f)⊂X↦Φ为线性泛函
(2)若
∃
c
⩾
0
\exists c\geqslant 0
∃c⩾0,使得对
x
∈
D
(
f
)
x\in \boldsymbol{D}\left( f \right)
x∈D(f),有
f
(
x
)
⩽
c
∥
x
∥
f\left( x \right) \leqslant c\left\| x \right\|
f(x)⩽c∥x∥,则称其为有界线性泛函。
(3)定义线性泛函
f
f
f的范数为:
∥
f
∥
=
s
u
p
x
≠
ϑ
,
x
∈
X
∣
f
(
x
)
∣
∥
x
∥
\left\| f \right\| =\underset{x\ne \vartheta ,x\in X}{\mathrm{sup}}\frac{\left| f\left( x \right) \right|}{\left\| x \right\|}
∥f∥=x=ϑ,x∈Xsup∥x∥∣f(x)∣
或
∥
f
∥
=
s
u
p
x
=
1
,
x
∈
X
∣
f
(
x
)
∣
\left\| f \right\| =\underset{x=1,x\in X}{\mathrm{sup}}\left| f\left( x \right) \right|
∥f∥=x=1,x∈Xsup∣f(x)∣
若
D
(
f
)
=
ϕ
\boldsymbol{D}\left( f \right) =\phi
D(f)=ϕ,规定
∥
f
∥
=
0
\left\| f \right\| =0
∥f∥=0,其中
D
(
f
)
\boldsymbol{D}\left( f \right)
D(f)为定义域。
在这个定义中,我们需要注意几点:
(1)
Φ
\varPhi
Φ 代表的是实数域或者复数域,所以可以看出,线性泛函是将一个多维变到一维的一个过程;
(2)线性泛函的有界是指定义域的有界,而不是类似高等数学中值域的有界;
由此可以定义对偶空间:
(II)对偶空间:
在赋范线性空间
X
X
X 上所有有界线性泛函构成的线性空间
X
∗
X^*
X∗上定义范数为
∥
f
∥
=
s
u
p
x
≠
ϑ
,
x
∈
X
∣
f
(
x
)
∣
∥
x
∥
=
s
u
p
x
=
1
,
x
∈
X
∣
f
(
x
)
∣
\left\| f \right\| =\underset{x\ne \vartheta ,x\in X}{\mathrm{sup}}\frac{\left| f\left( x \right) \right|}{\left\| x \right\|}=\underset{x=1,x\in X}{\mathrm{sup}}\left| f\left( x \right) \right|
∥f∥=x=ϑ,x∈Xsup∥x∥∣f(x)∣=x=1,x∈Xsup∣f(x)∣(由于是所有有界线性泛函构成的对偶空间,所以该泛函都满足线性空间的运算规则。)它是赋范线性空间,称其为
X
X
X的对偶空间。则如果取
X
X
X的基
E
=
{
e
1
,
e
2
,
⋯
e
n
}
\boldsymbol{E}=\left\{ \boldsymbol{e}_1,\boldsymbol{e}_2,\cdots \boldsymbol{e}_n \right\}
E={e1,e2,⋯en}作
X
X
X上的
n
n
n个线性函数
f
1
,
f
2
,
⋯
,
f
n
f_1,f_2,\cdots ,f_n
f1,f2,⋯,fn使得:
f
i
(
e
j
)
=
{
1
i
=
j
0
i
≠
j
i
,
j
=
1
,
2
,
.
.
.
,
n
(
1.1
)
\begin{matrix} f_i\left( \boldsymbol{e}_j \right) =\left\{ \begin{matrix} 1& i=j\\ 0& i\ne j\\ \end{matrix} \right.& i,j=1,2,...,n\\ \end{matrix} { (1.1)}
fi(ej)={10i=ji=ji,j=1,2,...,n(1.1)
则称
{
f
1
,
f
2
,
⋯
,
f
n
}
\left\{ f_1,f_2,\cdots ,f_n \right\}
{f1,f2,⋯,fn}为
{
e
1
,
e
2
,
⋯
e
n
}
\left\{ \boldsymbol{e}_1,\boldsymbol{e}_2,\cdots \boldsymbol{e}_n \right\}
{e1,e2,⋯en}的对偶基。
性质:
(1)、对于
∀
x
∈
X
\forall \boldsymbol{x}\in X
∀x∈X可以由基 中的向量表示
x
=
∑
i
=
1
n
k
i
e
i
(
1.2
)
\boldsymbol{x}=\sum_{i=1}^n{k_i\boldsymbol{e}_i} { (1.2)}
x=i=1∑nkiei(1.2)
所以
f
i
(
x
)
f_i\left( x \right)
fi(x)的可以唯一确定:
f
i
(
x
)
=
f
i
(
∑
i
=
1
n
k
i
e
i
)
f_i\left( \boldsymbol{x} \right) =f_i\left( \sum_{i=1}^n{k_i\boldsymbol{e}_i} \right)
fi(x)=fi(i=1∑nkiei)
有线性泛函的性质中的分配律可得:
f
i
(
x
)
=
f
i
(
∑
i
=
1
n
k
i
e
i
)
=
∑
i
=
1
n
k
i
f
i
(
e
i
)
f_i\left( \boldsymbol{x} \right) =f_i\left( \sum_{i=1}^n{k_i\boldsymbol{e}_i} \right) =\sum_{i=1}^n{k_if_i\left( \boldsymbol{e}_i \right)}
fi(x)=fi(i=1∑nkiei)=i=1∑nkifi(ei)
由式(1.1)可得
f
i
(
x
)
=
k
i
(
1.3
)
f_i\left( \boldsymbol{x} \right) =k_i { (1.3)}
fi(x)=ki(1.3)
也就是
x
\boldsymbol{x}
x对应分量上的坐标。
(2)对偶基的线性无关性
如果向量组
F
=
{
f
1
,
f
2
,
.
.
.
f
n
}
F=\left\{ f_1,f_2,...f_n \right\}
F={f1,f2,...fn}能作为对偶空间的基,则应该线性无关的。下面证明其线性无关性:
假设
f
1
,
f
2
,
.
.
.
f
n
f_1,f_2,...f_n
f1,f2,...fn线性相关,则存在不全为0的数
l
1
,
l
2
,
.
.
.
l
n
l_1,l_2,...l_n
l1,l2,...ln使得下式成立:
∑
j
=
1
n
l
j
f
j
=
0
(
1.4
)
\sum_{j=1}^n{l_jf_j}=0 { (1.4)}
j=1∑nljfj=0(1.4)
又因为
f
i
f_i
fi是
X
X
X上的线性泛函,则对于
∀
x
∈
X
\forall \boldsymbol{x}\in X
∀x∈X,则不妨代入
e
i
\boldsymbol{e}_i
ei 式(1.4)成立,则可以得到下式:
∑
j
=
1
n
l
j
f
j
(
e
i
)
=
0
(
1.5
)
\sum_{j=1}^n{l_jf_j}\left( \boldsymbol{e}_i \right) =0 { (1.5)}
j=1∑nljfj(ei)=0(1.5)
又由式(1.2)和(1.3)可得
i
=
j
i=j
i=j的时有:
l
i
=
0
l_i=0
li=0
即当且仅当
l
i
l_i
li全为0时,式(1.4)成立,所以
f
1
,
f
2
,
.
.
.
f
n
f_1,f_2,...f_n
f1,f2,...fn线性无关,所以
X
∗
X^*
X∗上的所有
f
f
f都可以由基
F
=
{
f
1
,
f
2
,
.
.
.
f
n
}
F=\left\{ f_1,f_2,...f_n \right\}
F={f1,f2,...fn}线性表示。
(III)直观举例:
好了,讲了这么多概念,相信读者也不是很懂这个玩意有什么用,所以我现在给大家一个捆绳子例子,但大家不要把思想限制在捆绳子上。假设你已经用
n
n
n种颜色的绳子,每一种颜色用了不同的数量,编织了一条绳,这条绳子就可以表示为:
绳子
=
数量
1
×
颜色
1
→
+
数量
2
×
颜色
2
→
+
⋯
数量
n
×
颜色
n
→
\text{绳子}=\text{数量}1\times \overrightarrow{\text{颜色}1}+\text{数量}2\times \overrightarrow{\text{颜色}2}+\cdots \text{数量}n\times \overrightarrow{\text{颜色}n}
绳子=数量1×颜色1+数量2×颜色2+⋯数量n×颜色n
都是汉字的话,太麻烦,换一种表达方式,用
a
a
a表示第
i
i
i个颜色的数量,
x
i
\boldsymbol{x}_i
xi表示第
i
i
i个颜色,那这条绳子
x
\boldsymbol{x}
x就可以表示为:
x
=
a
1
e
1
+
a
2
e
2
+
.
.
.
+
a
n
e
n
\boldsymbol{x}=a_1\boldsymbol{e}_1+a_2\boldsymbol{e}_2+...+a_n\boldsymbol{e}_n
x=a1e1+a2e2+...+anen
这个时候,你想知道你这条绳子能卖多钱,但是绳子的定价是根据每一种颜色的绳子的价格而定,这个时候,你按照标准
f
1
f_1
f1 ,则编出的绳子为:
f
1
(
e
)
=
a
1
f
1
(
e
1
)
+
a
2
f
1
(
e
2
)
+
.
.
.
+
a
n
f
1
(
e
n
)
f_1\left( \boldsymbol{e} \right) =a_1f_1\left( \boldsymbol{e}_1 \right) +a_2f_1\left( \boldsymbol{e}_2 \right) +...+a_nf_1\left( \boldsymbol{e}_n \right)
f1(e)=a1f1(e1)+a2f1(e2)+...+anf1(en)
按照标准
f
2
f_2
f2 ,编出的绳子为:
f
2
(
e
)
=
a
1
f
2
(
e
1
)
+
a
2
f
2
(
e
2
)
+
.
.
.
+
a
n
f
2
(
e
n
)
f_2\left( \boldsymbol{e} \right) =a_1f_2\left( \boldsymbol{e}_1 \right) +a_2f_2\left( \boldsymbol{e}_2 \right) +...+a_nf_2\left( \boldsymbol{e}_n \right)
f2(e)=a1f2(e1)+a2f2(e2)+...+anf2(en)
依次类推,可以得到标准
n
n
n的绳子为:
f
n
(
e
)
=
a
1
f
n
(
e
1
)
+
a
2
f
n
(
e
2
)
+
.
.
.
+
a
n
f
n
(
e
n
)
f_n\left( \boldsymbol{e} \right) =a_1f_n\left( \boldsymbol{e}_1 \right) +a_2f_n\left( \boldsymbol{e}_2 \right) +...+a_nf_n\left( \boldsymbol{e}_n \right)
fn(e)=a1fn(e1)+a2fn(e2)+...+anfn(en)
这样子的话就构成了编绳子的空间,也就是绳子空间
X
X
X的对偶空间
X
∗
X^*
X∗ ,则每一种标准捆出的绳子价格为
b
i
b_i
bi,则绳子的总价可以表示为:
g
=
∑
j
=
1
n
b
j
f
i
g=\sum_{j=1}^n{b_jf_i}
g=j=1∑nbjfi
所以
∀
x
∈
X
\forall \boldsymbol{x}\in X
∀x∈X,即任意一种绳子,可以计算总价
g
(
x
)
=
∑
j
=
1
n
b
j
f
j
(
x
)
=
∑
j
=
1
n
b
j
f
j
(
a
1
e
1
+
a
2
e
2
+
.
.
.
+
a
n
e
n
)
=
∑
j
=
1
n
a
j
b
j
f
j
(
e
i
)
g\left( \boldsymbol{x} \right) =\sum_{j=1}^n{b_jf_j\left( \boldsymbol{x} \right)}=\sum_{j=1}^n{b_jf_j\left( a_1\boldsymbol{e}_1+a_2\boldsymbol{e}_2+...+a_n\boldsymbol{e}_n \right)} \\ \,\, =\sum_{j=1}^n{a_jb_jf_j\left( \boldsymbol{e}_i \right)}
g(x)=j=1∑nbjfj(x)=j=1∑nbjfj(a1e1+a2e2+...+anen)=j=1∑najbjfj(ei)
根据式(1.1),可以得到
g
(
x
)
=
∑
j
=
1
n
a
j
b
j
g\left( \boldsymbol{x} \right) =\sum_{j=1}^n{a_jb_j}
g(x)=j=1∑najbj
这也与计算总价的计算公式相符,也符合我们的直观影响,即一种标准的绳子的价格是不同颜色绳子价格的和。
四、写在最后
在我看来对偶空间,更像是将任意一组基在相互垂直的正交基上的投影,而直观的感受则是价值的累积,线性泛函将向量或者说是面变成了一个点,而对偶空间则是将点变为了面。
最近做了点习题,发现这个东西对于线性空间中线性算子的存在性有比较好的解算和证明方法。
文中示例,引自知乎链接: https://www.zhihu.com/question/38464481.中石在的回答。