控制学习笔记(1)——反步控制法

本文探讨了反步控制法,即反演控制在系统稳定性分析中的应用。通过将高阶系统转化为一阶系统,利用Lyapunov函数确保系统稳定。作者通过举例和Simulink仿真验证了这种方法的有效性,展示了良好的信号跟踪效果,同时表达了对深入学习和交流的期待,并提及在控制律设计中遇到的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

反步控制法又称为反演控制法,如该控制方法的名字一般,将高阶系统分解成多个一阶系统。将下一级的变量当做虚拟输入,作用在该一级系统上,同时根据上一级系统建立lyapunov函数,实现系统稳定。直到最后一个系统实现控制,得到输入量。保证在任何情况下,存在Lyapunov函数,使得该体统能够稳定,同时利用该函数找一个参考输入,最终实现对输入的推导和设计。先考虑一般可控系统的标准型:


一、一般可控标准型的反演控制

对可控系统(包括线性和部分非线性),总可以经过变化,得到如下式的能控标准型:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、举例验证

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、仿真验证

根据上述公式推导得到系统的控制率,之后在simulink中进行搭建如下环境:
在这里插入图片描述
可以得到如图所示的结果
输入信号
在这里插入图片描述
对信号的跟踪效果还是可以的。

四、总结

第一次发布文章,也是为了督促自己学习,有不对的地方,恳请指出,交流学习。另外本文中的控制律推导仿真阶段,比例环节放大比例过大,有没有大佬能够指点一二,不胜感激。

控制方法与实现 《控制方法与实现》系统地介绍了控制方法的基本原理及其在不确定非线性系统中的应用。《控制方法与实现》共分为6章,在介绍演法的一般理论的基础上,重点论述了抑制参数漂移的自适应演方法,考虑非线性干扰观测器的弱抖振滑模演方法,针对系统模型部分未知的情况,使用模糊系统和神经网络估计系统中的未知部分,给出了基于智能系统的演设计方法,同时本书介绍了系统状态未知情况下的演设计方法。针对各种情况本书均给出了详细的理论设计方法和Matlab仿真。   《控制方法与实现》是作者在从事控制理论与控制方法研究的基础上完成的。本书适用于从事非线性控制方法研究的工作人员和研究生参考。 前言 第1章 绪论 1·1 研究的背景及意义 1·2 李雅普诺夫稳定性理论 1·2·1 李雅普诺夫意义下的稳定性 1·2·2 有界性 1·2·3 李雅普诺夫稳定性理论 1·3 微分几何理论基础 1·3·1 李导数和李括号 1·3·2 微分同胚 1·3·3 控制系统的相对阶 1·3·4 输入状态线性化 1·3·5 状态馈线性化的设计 1·4 演法的基本原理 1·5 演法的研究概况 1·5·1 自适应控制 1·5·2 鲁棒自适应控制 1·5·3 滑模控制 1·5·4 智能控制 1·5·5 其他控制方法 1·6 本书的主要研究内容 第2章 自适应控制方法 2·1 引言 2·2 常规自适应演法 2·2·1 自适应演法设计思路 2·2·2 仿真算例 2·3 抑制参数漂移的自适应控制 2·3·1 问题描述及预备知识 2·3·2 抑制参数漂移的自适应控制器设计 2·3·3 系统稳定性分析 2·3·4 仿真算例 2·4 扩展的自适应控制 2·4·1 问题描述 2·4·2 参数自适应律的设计 2·4·3 基于动态面的扩展控制器设计 2·4·4 稳定性分析 2·4·5 仿真算例 2·5 仿真算例的Matlab实现 2·5·1 节仿真算例的Matlab实现 2·5·2 节仿真算例的Matlab实现 2·5·3 节仿真算例的Matlab实现 2·6 本章 小结 第3章 不确定非线性系统的弱抖振滑模控制1 引言 3·2 滑模控制基本原理 3·3 匹配不确定非线性系统的弱抖振滑模控制 3·3·1 问题描述 3·3·2 滑模控制器设计 3·3·3 滑模控制稳定性分析 3·3·4 自适应滑模控制器设计 3·3·5 自适应滑模控制稳定性分析 3·3·6 非线性干扰观测器 3·3·7 匹配不确定非线性系统的弱抖振滑模控制 3·3·8 仿真算例 3·4 非匹配不确定非线性系统的多滑模控制 3·4·1 问题描述 3·4·2 多滑模控制 3·4·3 基于非线性干扰观测器的多滑模控制 3·4·4 系统稳定性分析 3·4·5 仿真算例 3·5 仿真算例的Matlab实现 3·5·1 节弱抖振滑模控制的Matlab实现 3·5·2 节自适应弱抖振滑模控制Matlab实现 3·5·3 节多滑模控制Matlab实现 3·6 本章 小结 第4章 基于模糊系统的非线性系统控制1 引言 4·2 基于模糊系统的非线性系统控制 4·2·1 问题的提出 4·2·2 模糊系统描述 4·2·3 控制器设计 4·2·4 仿真算例 4·3 节Matlab实现 4·4 本章 小结 第5章 基于神经网络的非线性系统控制1 引言 5·2 非线性系统的鲁棒小波神经网络控制 5·2·1 问题的提出 5·2·2 小波神经网络结构 5·2·3 控制器的设计 5·2·4 稳定性分析 5·2·5 仿真 5·3 不确定非线性系统的鲁棒自适应渐近跟踪控制 5·3·1 控制目标 5·3·2 控制器设计 5·3·3 仿真算例 5·4 算例的Matlab实现 5·4·1 节算例的Matlab实现 5·4·2 节算例1的Matlab实现 5·4·3 节算例2的Matlab实现 5·5 本章 小结 第6章 基于状态观测器的控制器设计 6·1 滑模观测器控制器设计 6·1·1 滑模观测器设计 6·1·2 滑模控制器设计 6·2 仿真算例 6·3 节仿真实例的Matlab实现 6·4 本章 小结 参考文献
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值