研究是任务驱动的,需要以问题为中心,而非以方法为中心。
目前需要做的:继续学习GNN基础知识,但是需要多思考,零散的知识点需要形成完整系统(从知识点a到b的内在原理是什么,为什么有这种迁移?)从方法1到2,为什么2比1好,推动1到2的原因是什么,那下一步怎么发展呢?
注重研究的整体性,学习是细致,研究是总体,站在全局看问题。
task:完成一个综述性的ppt,提出自己的细化问题(没有蠢问题,只有没解决问题的笨回答,每个问题都是具有启发性的),这个细化问题怎么进一步分解?(神经网络无非就是input&&output,找出我需要的输入输出)别人是怎么解决的?(follow前沿工作),别人提出的解决方案存在什么样的问题?(敢于批判)
研究脉络:
1.什么是GNN
2.为什么要研究GNN(实际意义?)
3.GNN的发展历程(需要找出内在推动原因,找出了内在推动原因,就能看到未来发展方向了)
A.对GNN结构的改进
B.GNN根据相关方法所做的改进(应用改进)
基于以上,需要做实际的实验比较(空口无凭,自己去验证!)
4.目前存在的问题(找到我要研究的东西)
5.如何解决问题
方法比对:
罗列方法,作出表格,分析利弊(是否解决了?完全解决了嘛?完全解决了就没有研究必要了。没完全解决的话,存在什么问题?怎样改进?),实验数据验证。