随机过程基础6--高斯过程1

1,为什么要学习高斯过程.
首先:随机扩散问题.
一根很细的管子,管子宽度可以忽略不记,那么就可以看成一条直线,我们在这条直线某一位置滴一滴墨水,看墨水在水中扩散所造成的影响.

如,给定一个时间t,看墨水扩散的距离,结果是随机的,没有一个确定的答案.我们希望建立起分布.
在这里插入图片描述
这个概率分布我们用ρ(y)来表示,表示在时间t内,扩散距离y的概率.ρ(y)是一个概率密度.

然后我们进一步,假设ρ(y)关于原点对称.
在这里插入图片描述
关于原点对称我们就得到了期望为0,二阶矩为常数.
在这里插入图片描述
t表示任意时间,x表示任意位置,那么f(0,0)就表示在0时刻0位置的初值.我们写出的f(x,t)就可以得到在任意时刻任意位置的粒子浓度.
那么我们根据粒子守恒得到如下公式
在这里插入图片描述
这个公式,表示经过一段时间tao后,x处得粒子浓度.等于之前离x处有y距离得粒子(f(x-y,t))×再扩散过来的概率密度ρ(y),积分.
公式是对的,但是真的与tao没关系吗?
在积分号外面是在时间维度上,积分号里面是在空间维度上.下面我们进行展开.
在这里插入图片描述
这里用到泰勒展开,泰勒展开是局部近似,只在增量比较小的时候比较准确.
在这里插入图片描述
其中的o就代替了后面的无穷多项.

那么就有问题,时间是我们确实假定tao为足够小的,但是在空间上,要在无穷上积分,并不是无穷小.也可以用泰勒公式吗?
事实证明是可以的.

我们将高阶项o忽略掉
在这里插入图片描述
然后利用前面建立的模型(一阶量为0,二阶量为D),化简到如上
在这里插入图片描述

这是一个偏微分方程,可以解出来.得到f(x,t)就是一个高斯.
高斯是扩散方程的解,也就是扩散过程可以被高斯描述.
图像如下:
在这里插入图片描述
并且这个高斯分布没有随机性.26.03
在这里插入图片描述
在这里插入图片描述

第二个为二元高斯分布,其中ρ表达的是两个随机变量之间的关系,也就是相关
运算.
在这里插入图片描述
在推广到n维,这里使用矩阵的符号.

我们从三个方面来殊途同归地理解高斯过程
(1),中心极限定理
在这里插入图片描述
当x1,x2…xn独立同分布的话(前面的n维高斯变量就类似这种情况,只不过不独立),我们以抛硬币为例,我们通过无穷次实验取平均就可以近似出期望的概念.高斯分布很可能就是就是一个概率密度函数.

这个极限定理的意义就是:将随机变量的随机性经过(无数次实验),的结果相加,类似于正负相消,这样就消除了随机性.

这叫做大数定理.

但是中心极限定理,保留了部分随机性,留下的是这些随机变量都拥有的部分.
在这里插入图片描述
这就是中心极限定理.N代表高斯分布,这里E(x)=0,方差等于1表示对随机变量进行归一化处理.

那么我们就可以知道,不管x1,x2…是什么分布,以中心极限定理,都会得到一个高斯分布(这是一个随机量).所以说随机性没有完全消除.高斯取每个点的概率是确定的,但是取哪个点是随机的,只能是有概率取这个结果.(如结果为0.2的概率为0.5)

下面来证明中心极限定理.
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

其中fai叫做特征函数.f(x)是x的概率密度.抛开常数来说,就是傅里叶反变换的公式.所以说每个随机变量的特征函数与概率密度是一对傅里叶变换对.其实这里-w就是傅里叶变换了,所以也可以理解为傅里叶变换吧.

本来两个随机变量加在一起会提高随机性,因为加在一起的方差等于各自方差的和.但是我们有了特征函数的工具,特征函数具有可加性
在这里插入图片描述
第一步用可加性,第二步用独立.各独立随机变量相加,最后结果就等于各个随机变量的特征函数相乘.

在这里插入图片描述
有一个小知识,如果两个独立随机变量相加,其和的概率密度等于之前两个随机变量概率密度的卷积.

注意,两个随机变量相加,结果的概率密度并不是相加关系,而是卷积关系.

在这里插入图片描述
下面我们利用特征函数来证明大数定理与中心极限定理.
对于大数定理可以写成如上形式,由于是独立同分布,所以每一个随机变量的特征函数都相同.由于是满足相加性的,所以每一个的特征函数是x的特征函数/n.
在这里插入图片描述
首先将e指数进行泰勒展开,并且求出线性期望,这里还有一个求极限的过程.最终就得到了当n趋近于无穷时,特征函数逼近于exp(jwu),就等于ctaU(w)的特征函数,注意这里u没有随机性,不是一个随机变量,但是确定值也有特征函数,所以最后得到一个确定性的数.

下面证明中心极限定理.
在这里插入图片描述
在这里插入图片描述
这里任然用泰勒将e展开,注意这里的x都经过了归一化(E为0,方差为1),所以展开第二项求期望是0,我们需要再多向后展开一项,才可以将特征函数表示完整.
在这里插入图片描述
下面我们就来说明求出来的结果就是高斯分布的特征函数.

在这里插入图片描述
如上是二元高斯分布的表示法,所以上面的中心极限定理就表示了一维高斯分布.

在这里插入图片描述
在这里插入图片描述
这里经过一个配方法,并且将与x无关的都提到积分号外面.
在这里插入图片描述
其中积分号里面以及前面的常数,恰好是一个完整的概率密度函数,所以积分为1.在其中的jwα方并不影响积分,在复变函数中,只是在不同线上做积分,所以完全相同,不影响积分值.(柯西积分定理)
在这里插入图片描述
在这里插入图片描述
根据柯西积分定理,在一个封闭空间中的积分为0,随着两条横线趋于无限,两条竖线趋于0.所以就得到了二者相同.

证明
在这里插入图片描述
两条竖线的方程以及积分如上,(实部加虚部),展开后得到exp(jc1y)一定是有界的,因为这代表sin函数,exp(c2y方)也是有界的,因为y有界,第一项趋于0,所以整体趋于0.

所以上下两条线相同.这就是一个完整的概率密度函数.
在这里插入图片描述
将(0,1)带入,就得到了之前算出来的结果.所以就证明了中心极限定理.

这里引入了特征函数,它特别适合处理独立随机变量的和的问题.

所以说中心极限定理告诉我们:
大量的微小的随机变量叠加在一起的时候,他们形成的整体的统计分布是高斯分布.
在这里插入图片描述

并且对于一些随机变量的和的增长约束用n来进行,就将随机性压到一个点上.而用根号n来约束,约束相对较弱(阶数低),就留下了一部分随机性.就是高斯分布.

在这里插入图片描述
如果继续增大n那么结果就一定是0了.因为相当于常数除以无穷大.

那么如果从根号n逐渐增大到n的过程中,在某一个点,结果就成了一个数了,这个点在哪呢?

在这里插入图片描述
就是如上结果,有什么意义呢?
随机变量相加,随机性在增长,增长的速度就是上面的结果.我们用这个结果对随机变量和进行约束,刚好得到一个数.

至此随机性有去掉一份神秘.

所以电子通信系统中的热噪声,常常假设为高斯分布.热噪声就是无数个微小电子撞击板形成的冲激,这无数个微小的冲激,叠加在一起就是高斯分布.

(2),第二个角度.(物理角度)
分子运动
这里我们来说明n维高斯分布,一个变量x=(x1,x2,…,xn),可以说他服从n维高斯分布,但不是x1,x2,…独立同分布于高斯.这个更像是很多次实验,而n维说的是x的维度.在几维空间上满足高斯分布.

在这里插入图片描述
首先如果建立运动模型,那么非常复杂,因为还有分子间的碰撞,多次碰撞是非常难预测的.

所以应该建立分布模型.也就是不再关心中间过程,而关心最终结果.
在这里插入图片描述
这里我们想象一个分布,将一滴墨水滴在水管中,给一个可以忽略不计的时间,分子在水管中扩散而出,那么很明显滴下墨水的位置分子应该越多,往两边走越远,分子越少.这个分布还满足如上两条性质.明显就是一个概率密度.

这个概率密度是确定的,随机性在每一次实验时,结果都不相同,无数次实验后服从高斯分布.

在这里插入图片描述
然后建立起这个方程,我们是想要求fai,这个才是高斯分布的函数,而f只是我们用来列方程的量.
相当于在距离上,每个粒子再进行高斯分布.

在这里插入图片描述

利用泰勒展开,求解方程,其中由于fai函数是偶函数,所以乘以一个奇函数,在对称区间上积分,结果为0.
在这里插入图片描述
前面的积分为方差记为D,这就是扩散方程,解如上.
这里还解出一个t参数.这里可以看到把t取成标准差,得到的结果就是一维的高斯分布.

(3)第三个角度,信息科学的角度
最大熵
熵最大就意味着随机性最强.
在这里插入图片描述
上面就是信息熵的定义.

什么样的随机过程熵最大?
在有限区间上是均匀分布,并且均匀分布只存在在有限区间上,但是这里我们要求的是无穷区间上.
在这里插入图片描述
并且拥有限制条件,给均值并且给二阶矩,就等于给了方差.
在这里插入图片描述
这里我们要求信息熵的最大值,并且有三个限制条件,所以用拉格朗日限制条件求极值方法.

这里的不同点在于:之前的拉格朗日求最大值,自变量都是一个数,但是这里自变量是一个函数,f,我们实际上在优化一个函数.

那么在求最大值优化过程中,需要求导,对一整个函数如何求导?

用到变分的方法.
在这里插入图片描述
在这里插入图片描述
其中,f0表示最优函数,在这个f0函数上信息熵最大.我们将原来的G(f)抽象出一个H(t),而t是正常的自变量,不是一个函数,所以可以求导,其中g也为一个函数.
H(0)处的信息熵最大=G(f0),所以H(t)函数在0处取最大值,所以对t求导,导数为0.
我们就根据这个方程去求解G
在这里插入图片描述
然后我们对上面的方程对t求导,这里积分号不动可能是因为积分的量并不是t,所以就按乘法公式来求导.

其中g函数是任取的,所以后面括号中的函数等于0
在这里插入图片描述
最后求解出f0,就得到了高斯分布的函数.因为底数是e,指数上是二次型.
也可以根据拉格朗日限制条件求解方程组,把lanmda都解出来,结果如下.

在这里插入图片描述

所以高斯随机过程就是携带信息最多的随机过程.

这是在双边无界的情况下,考虑最大熵问题的.

对于单边无界条件,我们给的限制条件不约束方差,这样最后的结果为指数上面一次项,所以为指数分布.
在这里插入图片描述

在这里插入图片描述
指数分布的最重要特点就是无记忆性.之后的泊松分布会用到.

这种在半空间上考虑问题的最大熵过程就是指数分布了.

在[a,b]上考虑,f0就成了一个常数与x无关,就是均匀分布了.

但是大部分情况都是双边无界的,所以高斯过程非常重要.

下面我们就来研究随机游走模型

在这里插入图片描述
这里表示将t离散化,先分析离散,后面再逐渐将变量趋于0,这是一维的随机游动,1/2的概率向左向右,并且每次游动Δx.

所以在0到t之间,走了n步.
在这里插入图片描述
sn为向右走的步数.所以可以表示出x(t)
在这里插入图片描述

xk为伯努利分布,并且可以将sn写成独立随机变量的和,每一个的均值为1/2,总的均值为n/2,所以求得E(x(t))为0.

在这里插入图片描述
x(t)的方差为E(X(t)的平方),其中每个量都减去n对方差没有影响,并且V(sn)的方差为n/4,因为V(x1)的方差=E(x1的平方)-E(x1)的平方=1/2-1/4=1/4,得到最后的方差为n(Δx)的平方.

在这里插入图片描述
我们试图将x(t)表达为中心极限定理的形式,那么sn-n/2可以使得每一个随机变量(x1,x2…)的均值为0,并且除以根号方差,也可以让每一个随机变量的方差为1,这样前一部分就是一个标准的高斯分布,配出后面的Δt与根号n,其中n=t/Δt,那么我们分析时候如果让
(Δx的平方)与Δt趋于0的速度保持整数倍的相同,趋于常数D,那么就得到了我们之前扩散方程的结果.

所以高斯分布广泛存在于现实世界中.

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 球不变随机过程法是一种用来生成杂波的方法,它基于球不变随机过程的原理。球不变随机过程是指在空间中的每个点上,随机变量的统计特性都是相同的。 生成杂波的过程如下:首先,选择一个球状区域作为生成杂波的范围。然后,在该球状区域内选择一个球心作为起始点。接着,从该起始点开始,以球不变随机过程基础,生成随机数。这些随机数决定了球心在球状区域内的移动方向和距离。 通过不断生成随机数,并按照其决定的移动方向和距离,球心在球状区域内进行移动。在移动的过程中,球心经过的点会被标记为杂波的值。这些点的分布和数值是由球不变随机过程所决定的,因此可以保证杂波的随机性和均匀性。 最后,将生成的杂波值进行处理和调整,以适应不同应用场景的需求。这包括对杂波的尺度、频率等进行调整,以获取期望的杂波特性。 总之,球不变随机过程法是一种可靠且有效的方法,用于生成具有随机性和均匀性的杂波。在各种应用场景中,如通信系统、雷达系统等,都可以使用该方法生成合适的杂波信号。 ### 回答2: 球不变随机过程是一种数学模型,用于描述在一段时间内或在不同空间位置上观察到的某种现象的随机变化过程。该过程中的变化是由随机因素引起的,因此它具有不确定性和随机性。 生成杂波是球不变随机过程应用的一种重要场景之一。杂波是指频谱无规律、波形无规则的信号。在通信和无线电领域中,杂波是指与预期信号不相关的干扰信号。为了研究和分析杂波对通信系统的影响,需要生成具有特定统计特性的杂波信号。 球不变随机过程法是一种常用的生成杂波信号的方法之一。它基于球不变随机过程的性质,通过一系列数学运算来生成具有球不变特性的随机信号。在球不变随机过程法中,可以通过选择合适的参数和统计模型,生成符合特定要求的杂波信号。例如,可以生成功率谱密度服从斯分布的杂波信号,以模拟真实环境中的干扰情况。 生成杂波信号的应用非常广泛。在通信系统设计和性能评估中,需要对系统的可靠性和抗干扰能力进行测量和验证。通过生成具有不同统计特性的杂波信号,可以模拟各种干扰情况,从而评估系统的性能和鲁棒性。 总而言之,球不变随机过程法是一种用于生成杂波信号的方法,通过选择合适的参数和统计模型,生成具有特定统计特性的杂波信号。该方法在通信系统设计和性能评估中具有重要的应用价值。 ### 回答3: 球不变随机过程法是一种用于生成杂波的方法,它基于球不变随机过程的理论。这种方法是通过模拟球不变随机过程的统计特性来生成复杂的随机信号。 球不变随机过程法的基本思想是将随机过程视为一个维球面上的点,通过调整球面上的点的位置来实现不同统计特性的控制。具体来说,该方法首先根据所需的均值、协方差矩阵和功率谱密度函数,计算得到球面上的点的位置分布。然后,根据指定的随机分布函数,将球面上的点映射到实数域上,从而得到最终的随机信号。 这种方法具有很大的灵活性和可控性,可以生成各种不同类型的杂波信号,如斯杂波、雷达杂波等。同时,球不变随机过程法还可以考虑时间和空间相关性,从而更好地模拟复杂的实际场景。 在实际应用中,球不变随机过程法已经被广泛应用于通信、雷达、声学等领域。它可以用于生成测试信号、仿真信号、干扰信号等,有助于对系统性能进行评估和优化。 总之,球不变随机过程法是一种用于生成杂波的有效方法,通过模拟球不变随机过程的统计特性,可以生成复杂的随机信号,有着广泛的应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值