迁移至QuickSight:降低成本并提高生产力

迁移至QuickSight:降低成本并提高生产力

关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Amazon QuickSight, Cloud-Native Bi Platform, Unified Service, Generative Ai/Ml Capabilities, Automatic Scaling, Managed Service]

导读

在本次会议中,探索从传统商业智能(BI)迁移到Amazon QuickSight的最佳实践和经验证的策略。了解如何通过转向亚马逊云科技云端BI服务来帮助您降低成本、提高生产力和改善性能。听取来自拉丁美洲大型私人银行Itaú的分享,他们将讲述从传统系统迁移到QuickSight的历程,通过5,500个仪表板覆盖了7,800名作者和22,000名活跃用户。同时了解Whole Foods如何应对各种可视化工具与QuickSight之间的功能差异,并学习他们的企业数据迁移策略。

演讲精华

以下是小编为您整理的本次演讲的精华。

2024年亚马逊云科技 re:Invent大会的“迁移到QuickSight:降低成本并提高生产力”环节由亚马逊高级全球QuickSight市场专家Sam Debussy主讲,他阐述了客户从各种平台和BI供应商迁移到亚马逊QuickSight后所获得的好处。Debussy强调,已有数千家客户完成了这一迁移,导致BI使用量增加、投资回报率大幅提升,而负责迁移的决策者由于实现了成本降低而常被视为英雄。

最近由Enterprise Strategy Group进行的一项调查对数千家从竞争对手BI供应商迁移到亚马逊QuickSight的客户进行了研究,证实了这一转变的经济优势。研究显示,客户在三年内能够将成本降低高达75%,实际支出仅为之前的四分之一。此外,研究还显示BI用户和使用量显著增加,范围在100%到200%之间,这意味着组织内有更多用户在决策过程中利用数据和洞见。另外,研究报告显示投资回报率高达275%。

Debussy强调,QuickSight拥有超过10万客户,并且持续增长,遍及各行各业和各种用例,这证明了其实力和增长。他解释说,QuickSight是一个全面统一的BI平台,为组织内部和外部用户(如果客户希望将其嵌入给客户使用)提供服务。研究表明,客户平均使用两个或更多供应商来满足其BI用例需求,例如一个供应商用于报告、另一个用于嵌入式仪表板、第三个用于自然语言查询。这种做法通常会导致BI环境分散、缺乏治理、缺乏单一事实来源,并且客户需要为不同的培训、供应商、工具和许可证付费,而这些许可证通常缺乏最新的生成式AI/ML功能。

使用亚马逊QuickSight,客户可以获得一个统一的、完全托管的超大规模服务,使他们能够从单一用户界面执行端到端的BI流程。用户可以连接数据、执行数据准备、创建资产(无论是仪表板还是分析)、并决定如何通过故事、嵌入式仪表板或分页报告将它们交付给用户,所有这些都来自由生成式BI驱动的统一平台,赋予这些用户权力。

Debussy还解决了可扩展性问题。使用传统BI工具的客户通常需要规划扩展、分配资源并预测使用情况以确定所需资源,这可能是一个持续的挑战。客户可能会过度配置资源,导致过剩容量和不必要的成本,或者资源不足,导致随着用户数量增加而表现不佳。解决此类问题通常是笨拙的、不是实时的,而且成本高昂。

相比之下,作为一种云原生工具,亚马逊QuickSight可以在不需要用户干预的情况下自动实时扩展,从而减轻了客户的资源和容量规划负担。Debussy进一步强调了管理QuickSight的便利性和相关的成本降低。与需要多年合同并需要管理服务器、软件升级、维护和修补的传统工具不同,QuickSight是一个完全托管的工具,采用按使用量付费的每月计费模式。客户无需管理任何服务,因为QuickSight始终保持最新状态,使他们能够专注于获取洞见,而不是管理资源。

随后,亚马逊云科技高级技术项目经理Mitreya Shaw讨论了迁移的最佳实践。她承认,迁移可能会耗费大量成本、时间,并且具有破坏性,不仅会影响进行迁移的团队的日常业务运营,也会影响最终用户。但是,如果执行正确并进行适当规划,迁移可以带来显著的长期收益,其中一些Debussy已经涵盖。通过迁移到QuickSight,客户可以让最终用户自助服务并利用AI/ML功能,无需担心管理资源或服务器,从而可以专注于可视化和为业务构建可视化。本质上,客户现代化了他们的BI平台,而QuickSight则是一站式解决方案。

Shaw概述了几个迁移的最佳实践。在规划阶段,确定迁移将如何让最终用户受益以及将为客户带来何种优势是至关重要的。比较现有BI平台与QuickSight非常关键,以真正了解投资回报。接下来,团队应该与领导层制定目标并寻求一致,以确保获得领导层支持,这有助于确定优先级和规划。

设定时间表是另一个关键步骤。通常,迁移到QuickSight的团队会考虑一个切换日期,该日期与他们之前的BI工具的续订时间线相一致。将QuickSight迁移与该切换日期保持一致,并从该时间线倒推,可以进行并行测试,并帮助用户熟悉QuickSight。

建议组建一个由管理员组成的专门“虎队”,他们可以访问两种BI工具(之前的工具和QuickSight),负责管理访问权限、权限和安全指南。该团队还应包括构建者(负责开发报告的BI工程师和业务分析师)和测试人员(将签署报告并协助进行用户验收测试的最终用户或早期采用者)。

在构建和执行阶段,Shaw强调进行映射练习以比较之前的BI工具和QuickSight之间的实体和资产(如数据集、数据源、可视化和计算)的重要性,因为它们可能存在差异。在之前的BI工具和QuickSight中构建使用情况和管理报告至关重要,因为它有助于了解哪些资产是活跃使用的、陈旧的、未使用的或重复的,从而可能节省时间、精力和金钱,只需优先迁移活跃资产,避免迁移陈旧或重复的资产。

首先迁移业务关键报告(如领导层依赖的每周业务评审或月度报告)可以进一步简化和加速流程。应优先考虑可以使用QuickSight API以编程方式迁移的资产,以缩短变更范围并加速流程。在各个阶段,构建成果并与更广泛的团队沟通非常重要,以增加信心并实现无缝迁移。

Shaw简要介绍了亚马逊云科技为迁移提供的资源,包括QuickSight API和资产捆绑包,用于以编程方式迁移,对于拥有数千份报告、多个账户和数百个文件夹的企业而言,这尤其有用,因为手动迁移是不可行的。亚马逊云科技还提供迁移服务和合作伙伴,亚马逊云科技专业服务团队与客户合作实现端到端的迁移目标,而AWSBI迁移合作伙伴则提供加速机制,助力客户开启通往QuickSight的旅程。有关亚马逊云科技专业服务和亚马逊云科技合作伙伴迁移工具的信息可在亚马逊云科技市场上找到。

此外,亚马逊云科技为大型企业组织提供资金计划,如企业用户(EU)Pen承诺,为大规模部署(涉及将数千个资产迁移到QuickSight)提供定制的可扩展定价。迁移加速计划(MAP)有助于降低成本,而特定行业计划进一步抵消成本。客户可以咨询他们的客户经理或联系亚马逊云科技客户经理团队,以确定是否有资格参与这些资金计划。

随后,Whole Foods Market的数据分析经理Ravi Radi分享了他们在六个月内将超过2万名用户迁移到QuickSight的转型之旅,从设计到上线发布。Radi支持亚马逊杂货分析,涵盖各种格式,包括亚马逊杂货、亚马逊Fresh、Whole Foods和Go,以及通过20多家第三方本地杂货店提供送货服务。他们的使命是为杂货和家居用品创建一站式商店。

专门针对Whole Foods,Radi解释说,Whole Foods在美国、加拿大和英国拥有500家门店,是天然和有机食品的领导者,其目的是滋养人类和地球。

Whole Foods面临的一个挑战是旧平台的仪表板性能极差。Radi提供了一个视角:如果一个仪表板用户查看五个仪表板,每个加载时间为一分钟,那么他们每年将花费约4.5小时等待仪表板加载。扩展到2万名用户,这相当于用户花费8万到9万小时等待仪表板加载,而不是基于洞见采取行动。Whole Foods的目标是将仪表板加载时间从超过一分钟缩短到五秒钟以内,这是一个转型之旅,他们的客户现在正在享受其成果。

另一个考虑迁移到新平台的原因是成本。在评估不同平台以解决旧版BI平台性能差的问题时,Whole Foods意识到与亚马逊云科技提供的相比,他们支付的费用高出75%以上。此外,旧平台已变得臃肿,用户开发了大量可视化、多个数据源,仪表板中存在冗余,同一指标出现在多个仪表板中。Whole Foods抓住这个机会合理化了他们的仪表板,只向用户呈现最相关的内容。

Whole Foods还面临着复杂的数据源管理挑战,数据来自SharePoint、Excel、旧数据源和亚马逊云科技基础设施本身等各种来源,使管理变得困难。他们也在考虑是否是迁移到新平台的合适时机,因为他们正在进行一项跨多年的数据迁移计划。他们担心如果将报告平台从旧系统迁移到QuickSight,而数据源随后被迁移,他们将不得不重新创建所有仪表板。

相反,Whole Foods选择创建一个临时暂存区,在那里他们预处理所有数据并将其链接到仪表板。这种方法确保了未来发生数据迁移时,他们只需更改底层数据源,而无需修改仪表板。

在评估多个报告平台并进行概念验证以评估他们现有报告在Amazon QuickSight上的性能时,Whole Foods仅根据概念验证就观察到了90%的加载时间改善。他们还认识到了高用户量的可扩展性优势,无需在高峰使用期间规划容量或缩减资源,这往往会导致支付过多或资源不足。

与Whole Foods已在使用的其他亚马逊云科技基础设施的无缝集成,消除了对安全性和防火墙配置的担忧,也是他们决策的另一个因素。最后,成本是他们选择QuickSight的重要考虑因素。

Whole Foods从规划到上线的旅程始于最初对BI平台性能差的担忧,这在领导层商店访问期间经常受到投诉,促使领导团队下令改善。然而,他们有多种选择来解决这个问题,必须考虑各种因素来权衡是迁移到新平台还是修复现有平台。获得利益相关方的承诺至关重要,因为报告平台在运营上是可行的,团队正在使用它进行日常决策。迁移到一个他们不完全确定是否可靠的新平台意味着需要做更多工作来获得客户承诺才能继续。

Whole Foods进行了大量概念验证,展示了他们的性能,展示了组织外成功实施的示例,并制定了一个与即将到来的BI合同续期时间线相一致的工作回溯计划。他们的目标是在续期日期之前迁移大多数用户。

在分阶段实施方法中,Whole Foods专注于浏览量和用户最多的仪表板,应用Pareto原理,投入20%的努力实现80%的投资回报。在迁移的头三个月,他们专注于使用量最大、用户最多的仪表板。到2024年3月,他们已迁移约20,000名用户,剩下约3,000名用户和一些复杂且关键的报告需要在接下来的三个月内迁移。

Radi强调不要过度复杂化设计架构。从本质上讲,他们的目标是将旧数据通过S3迁移到亚马逊云科技环境,在某些情况下迁移到Redshift进行数据转换,然后创建预处理的数据集供QuickSight使用。

Whole Foods对性能问题特别谨慎。在之前的平台上,他们有定制的数据连接和数据源,在仪表板加载时实时处理数据,同时运行多个查询和计算,这影响了报告性能。为了缓解这一点,他们有意选择尽可能预处理数据,让报告平台呈现数据,而不是执行实时计算。虽然QuickSight擅长使用其SPICE引擎进行实时计算,但Whole Foods认为预处理更有效,可避免潜在的性能问题。

在这种架构下,预处理数据区域充当转换中心。将来,当Whole Foods将所有旧数据迁移到亚马逊云科技时,他们的意图是更改馈送到这个预处理数据区域的管道,从而使仪表板能够自动运行,无需重建。

此次上线的好处包括成本降低75%,仪表板加载时间从一分钟多改善到不到六秒。Whole Foods还消除了用户加载仪表板、去喝咖啡,可能在返回时遇到超时错误而不得不重新加载仪表板的令人沮丧体验。

凭借性能的提升,Whole Foods设想利用更多当前正在开发的亚马逊云科技生成式AI功能,并与亚马逊云科技团队就概念验证紧密合作。

Radi分享了一些经验教训。获得领导层的支持至关重要,尤其是对于这种规模的迁移,因为其他项目的竞争优先级可能会转移资源,从而延迟整体迁移进程。此外,分阶段方法和优先级设置,专注于使用量大的仪表板以最小的努力获得最大的价值,也是至关重要的。

最初,Radi的团队缺乏QuickSight知识和能力。然而,他们很快提升了技能,一周之内,开发人员就能独立创建仪表板。为避免重复发明轮子,Whole Foods为迁移建立了一个开发人员社区,在文档中捕获并分享了经验教训,使同事能够互相利用彼此的知识。

展望未来,Whole Foods旨在优化仪表板以支持移动使用,改善目前依赖后台办公系统的商店用户体验。他们还在探索Amazon QuickSight Q的对话式BI功能,以提供更自然的数据洞见交互方式。

Roberto Figuera是巴西Banco Itaú数据分析工程平台的负责人,他随后分享了他们将17,000个仪表板从本地数据可视化旧平台迁移到QuickSight的经历。Banco Itaú是拉丁美洲最大的银行,市值84亿美元,品牌价值84亿美元,在18个国家运营,拥有96,000名员工,其中17,000名在IT现场。

2014年和2015年,Banco Itaú启动了一个大规模项目,将整个平台从大型机迁移和现代化到本地系统,不仅是简单的提升和转移,还重写了一些旧系统。对于数据平台,他们的思路是变得更加数据驱动,在过去三年中,他们决定从集中式方法迁移到数据网格架构模式,将生产和消费域分离为数据平台上的租户。

在这一背景下,Banco Itaú决定将其数据可视化平台从本地迁移到云端。迁移的主要原因是性能问题,因为他们的本地环境在高峰时段会出现低性能,造成重大业务影响,以及降低成本。他们选择QuickSight是因为它与他们的数据网格方法相一致,产品的路线图,以及与亚马逊云科技的合作伙伴关系和支持,这对于业务连续性至关重要。

为了说明他们如何将QuickSight与数据网格架构相集成,Figuera分享了一些数字。他们有730个生产数据湖账户(产品系统将数据加载到数据湖的租户)和近1,300个消费账户(业务用户在其中创建仪表板、构建数据集进行报告并访问数据)。他们有20,000个可以通过授权流程在账户之间共享和访问的民主化表,整个数据网格中总共有数十万个表。他们有9,000名用于数据探索和准备的用户,以及超过16PB的数据,包括用户数据。

Figuera解释了他们的架构,左侧是源系统和生产账户,将数据引入数据湖,右侧是消费账户。中间是数据治理、数据目录和数据质量的控制平面,包括Lake Formation和Glue Catalog。每当用户在Athena中运行查询或在Glue或EMR中运行作业时,它都会通过Lake Formation获得访问表的授权,从Glue Catalog检索物理数据地址,然后执行作业。这种方法确保了整个平台的隔离和访问控制,为业务用户和数据工程师提供了自助服务功能,同时降低了运营成本。

然而,在讨论QuickSight时,他们遇到了一个挑战:查看仪表板的用户与探索和处理数据的用户不同。因此,他们需要单独的访问控制和自助服务流程。Banco Itaú为QuickSight创建了一个单独的账户,利用了受限文件夹功能。作者被分配到一个受限文件夹,在那里他们根据消费账户中构建的结果数据创建数据源和数据集。他们将数据加载到SPICE,并有子文件夹来存储仪表板和分析。然后,作者可以创建业务用户组并将其分配给子文件夹,授予对仪表板的访问权限,同时限制对数据集的访问。

伊塔乓可银行的迁移大约花费了两年零六个月的时间,其中包括六个月的规划和准备阶段。他们必须了解访问控制和安全性,与其数据平台集成,为其150个不同的数据源(包括数据库实例、文件服务器和用户上传的文件)建立网络连接,为QuickSight设置可观察性日志和警报,制定入职和连接流程的文档,并为计费、收费、SPICE内存管理以及数据集和数据源的备份和恢复流程制定策略。

来自亚马逊云科技专业服务和他们的账户团队的支持对伊塔乓可银行的旅程起到了关键作用。此外,他们与亚马逊云科技合作伙伴Compass UOL合作,后者负责重写和重新设计平台的仪表板,在迁移过程中为业务用户提供关键支持。

伊塔乓可银行使用Compass提供的工具根据复杂程度对仪表板进行了分类。他们将迁移过程组织成交付冲刺,根据复杂程度和消耗量(查看次数)对仪表板进行优先排序。复杂的仪表板首先迁移,因为它们需要更长的时间,而高消耗量的仪表板则优先考虑,以减少服务器的工作负载并缓解高峰时段的性能影响。

每周检查点确保与时间表保持一致。伊塔乓可银行的时间线显示了已迁移仪表板的测量结果,以及已删除或合并的仪表板。他们最初有17,000个仪表板,迁移了7,600个,同时删除或合并了近10,000个仪表板。

该过程涉及每月研讨会、沉浸式培训日为业务团队提供基本的QuickSight技能培训,以及与亚马逊云科技的办公时间,让业务用户讨论疑问并获得提示。随着成功迁移案例的出现,伊塔乓可银行进行了路演,激励其他用户进行迁移。

大约在年中,他们意识到计划进度与实际进度之间存在差距,主要原因是业务优先级的竞争和作者技能的缺口。高层赞助在激励业务用户和作者加快迁移进度方面发挥了关键作用。最终,伊塔乓可银行撤销了旧平台的读取访问权限,以确保用户过渡到新的仪表板。

数据显示,去年12月,他们在旧平台上有32,000名用户,而在QuickSight上则增长到34,000名用户。虽然他们最初有17,000个仪表板,但在合并或删除近10,000个仪表板后,他们在QuickSight上创建了超过15,000个新仪表板。旧平台有120万次查看或访问会话,而QuickSight目前有近90万次查看,随着更多高度使用的仪表板迁移,这一数字预计会继续增加。

Spice(QuickSight的内存数据存储)是伊塔乓可银行关注的一个问题,他们存储了12TB的数据。他们正在制定治理和教育策略,以有效管理Spice。他们拥有18,000个数据集、一个点集和七个受限文件夹,分隔访问控制流程运行良好。

结果显示,用户认为QuickSight比旧平台快十倍,即使在高峰需求期间也能保持一致的响应时间。伊塔乓可银行还提高了平台上的治理和运营能力。

有趣的是,银行的一些团队在旧平台上为移动设备和台式机维护了单独的仪表板版本。使用QuickSight,他们只需要一个版本,可与Salesforce和Microsoft Dynamics等其他SaaS解决方案无缝集成嵌入式仪表板。一些团队甚至创建了门户网站来嵌入QuickSight仪表板。

Figuera分享了一些经验教训。高层赞助至关重要,如果没有它,他们可能无法完成迁移。他们缺乏全面的培训计划,这是一个重要教训。一些用户试图同时现代化仪表板和数据源,从而延长了流程。伊塔乓可银行建议先迁移,然后再现代化,为仪表板现代化留出充足的时间。

他们还了解到不要低估业务用户仪表板的复杂性,这些仪表板可能复杂但视觉上很吸引人。与亚马逊云科技分享需求并与产品路线图保持一致,以便及时获得支持,这一点至关重要。

对于下一步计划,伊塔乓可银行已经对亚马逊QuickSight Q(亚马逊的对话式BI功能)进行了概念验证。Figuera表示,熟练的仪表板设计师并没有看到QuickSight Q的显著价值,因为他们更喜欢自己构建仪表板。然而,业务用户发现它很有价值。他建议让业务用户参与QuickSight Q的概念验证,而不是技术人员,因为业务用户会提出相关的业务问题,从而提供更好的反馈。

此外,QuickSight Q在葡萄牙语方面仍在发展,因此伊塔乓可银行致力于通过指标定义和同义词来增强主题。他们的目标是自动化将业务词汇定义纳入主题的过程。

陈旧仪表板和Spice使用情况的治理是另一个关注领域。总的来说,伊塔乓可银行正在制定一项战略,以提高整个银行数据资产的可发现性,可能利用生成式人工智能来增强20,000个数据集、表格、仪表板和机器学习流程的可搜索性,为用户提供更好的体验,以找到解决问题所需的正确数据。

来自Whole Foods Market的Ravi Radi和来自伊塔乓可银行的Roberto Figuera分享了他们组织的旅程、经验教训和未来计划,强调了规划、优先排序、与亚马逊云科技团队和合作伙伴合作的重要性,以及迁移到亚马逊QuickSight的好处,包括节省成本、提高BI使用率、可扩展性以及利用前沿人工智能/机器学习功能的能力。

总之,本次会议重点介绍了迁移到亚马逊QuickSight的优势,这是一个统一的BI平台,可满足内部和外部所有用户的各种用例需求。它提供了最佳实践、Whole Foods Market和伊塔乓可银行的客户成功案例,以及在整个迁移过程中与亚马逊云科技团队和合作伙伴密切合作的重要性。

下面是一些演讲现场的精彩瞬间:

Amazon QuickSight是一个统一的BI平台,为所有用户提供服务,消除了使用多个供应商的需求,并提供了最新的AI/ML功能。

9fe6bb2167460e3e7fc3afaf28c12a2b.png

Amazon Redshift消除了客户规划扩展、预测使用情况和管理资源的需求,提供了无缝扩展和优化性能,而无需承担传统BI工具所带来的麻烦和成本。

6968ac3256b66d2ac435e6c2157dec5c.png

Amazon正在优化其仪表板,以更好地支持移动使用,确保店铺用户随时随地无缝访问洞见。

67fda4f5cca296a171d149df1e3174fb.png

他们强调了在为期两年的迁移到Amazon QuickSight过程中所涉及的广泛规划和准备工作,包括与其数据平台集成、管理访问控制和安全性,以及启用与各种数据源的连接。

4e3519cb976fa35156640384d906cc4a.png

演讲者解释了他们如何根据复杂性和使用情况对仪表板迁移进行优先级排序和组织,旨在减少服务器工作负载并提高性能。

c2d430c7b12472545ab3a15185fa2a93.png

他们强调了改善组织内部对仪表板、数据资产和机器学习流程的数据治理、可发现性和用户体验的重要性。

820990c8d85c3c6793e7902e8fa34117.png

总结

迁移到云原生商业智能平台 Amazon QuickSight 为客户带来了显著的好处,包括三年内节省高达 75% 的成本、BI 使用量增加 100-200%,以及 275% 的投资回报率。QuickSight 提供了一体化、完全托管和可扩展的解决方案,满足所有 BI 用例需求,并通过生成式 AI/ML 功能赋能用户,消除了资源规划和容量管理的需求。

Whole Foods Market 开启了转型之旅,在六个月内迁移了超过 20,000 名用户,仪表板加载时间缩短了 90%,从一分钟减少到不到六秒。通过优先处理高使用量仪表板并培养协作开发者社区,他们优化了迁移过程,为通过 Amazon Q 实现增强的移动体验和对话式 BI 铺平了道路。

拉丁美洲最大的银行 Itaú Unibanco 在两年内成功将 17,000 个仪表板从传统的内部部署平台迁移到 QuickSight。在高层赞助、结构化迁移计划以及 亚马逊云科技 专业服务和合作伙伴的支持下,他们简化了治理、提高了性能,并为 34,000 名 QuickSight 用户启用了自助服务功能。在这一转型之旅的下一步,他们将采用 QuickSight Q 并提高数据可发现性。

迁移到 QuickSight 使组织能够专注于洞见而非资源管理,从而在成本节约、生产力提高和大规模数据驱动决策方面释放潜力。通过利用 亚马逊云科技 的专业知识和最佳实践,客户成功应对了迁移的复杂性,成为了组织内的英雄。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值