cuda编程---二维图像实现并行归约算法及基础优化方式

本文介绍了CUDA编程中并行归约算法的基础和优化方法,针对1000 * 512大小的图像数据流,通过连续寻址和避免分支发散提高内存读取效率,利用二维线程块实现共享内存归约求图像最大值,讨论了优化后的代码和注意事项。


注:
1、本文不做任何公式推导,主要包含对算法的个人理解及少量的代码
2、以求取最大值为例,给出二维图像并行规约代码
代码中对于图像数据的处理,采用1维的共享内存和2维的共享内存分别实现归约
3、对于归约算法基础的优化方式(这里指连续寻址、分支发散),分析其背后的机制

一、前言

cuda的并行归约算法是cuda的入门经典算法之一,网上有许多公式推导和原理的详解,并行归约的核心思想就是每一个线程同时计算一部分数据,最后再把结果合并。这里不做过多的赘述。
在本文中,我们假设有一个1000 * 512大小的图像数据流float * data,每一行的pitch为1024* sizeof(float),在此基础上我们对并行规约算法及其常见的、基础的、经典的优化算法进行研究。
最简单的规约算法如下:

__global__ void MyReduction1D(float* _inData, float
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这是一个图像

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值