计算机视觉——基于改进UNet图像增强算法实现

计算机视觉——基于改进UNet图像增强算法实现

1. 引言

在低光照条件下进行成像非常具有挑战性,因为光子计数低且存在噪声。高ISO可以用来增加亮度,但它也会放大噪声。后处理,如缩放或直方图拉伸可以应用,但这并不能解决由于光子计数低导致的低信噪比(SNR)。短曝光图像受到噪声的影响,而长曝光可能会引起模糊,通常也不切实际。已经提出了各种去噪、去模糊和增强技术,但在极端条件下,如夜间视频速率成像,它们的有效性是有限的。有物理手段可以增加低光照下的SNR,包括打开光圈、延长曝光时间以及使用闪光灯。但每种方法都有其特有的缺点。例如,增加曝光时间可能会因为相机抖动或物体运动引入模糊。
在这里插入图片描述
为了支持基于学习的低光照图像处理流程的开发,我们正在处理See-in-the-Dark(SID)数据集,它包含原始的短曝光低光照图像,以及相应的长曝光参考图像。使用所呈现的数据集,我们开发了一个处理低光照图像的流程,该流程基于端到端训练的全卷积网络。该网络直接在原始传感器数据上操作,并取代了在这些数据上表现不佳的传统图像处理流程。

原文:https://medium.com/@arijitdey3410/learning-to-see-in-the-dark-using-convolutional-neural-network-4c03766bfd8
🔥计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!
✍🏻作者简介:机器学习,深度学习,卷积神经网络处理,图像处理
🚀B站项目实战:https://space.bilibili.com/364224477
😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+
🤵‍♂代做需求:@个人主页

2. 现有的经典图像处理技术

2.1图像去噪

图像去噪是低级视觉中一个发展成熟的主题。有一些最先进的方法使用诸如全变分、小波域处理、稀疏编码、核范数最小化和3D变换域滤波(BM3D)等技术。这些方法通常基于特定的图像先验,如平滑性、稀疏性、低秩或自相似性。不幸的是,大多数现有方法已经在合成数据上进行了评估,例如添加了高斯噪声或椒盐噪声的图像。最近一项对真实数据的仔细评估发现,在真实图像上,BM3D的性能超过了更近期的技术。

2.2 低光照图像增强

已经应用了各种技术来增强低光照图像的对比度。一个经典的选择是直方图均衡化,它平衡了整个图像的直方图。另一种广泛使用的技术是伽马校正,它增加了暗区的亮度,同时压缩了亮像素。更先进的方法执行更全局的分析和处理,例如使用逆暗通道先验、小波变换、Retinex模型和照明图估计。

图1:经典图像处理技术
在这里插入图片描述

然而,研究人员还探索了将深度网络应用于去噪,包括堆叠稀疏去噪自编码器(SSDA)、可训练的非线性反应-扩散(TNRD)、多层感知器、深度自编码器和卷积网络。当在特定噪声水平上训练时,这些数据驱动的方法可以与最先进的经典技术如BM3D和稀疏编码相媲美。

3. See-in-the-Dark 数据集

See-in-the-Dark(SID)数据集包含1865张原始短曝光图像,每张图像都有相应的长曝光参考图像。请注意,多个短曝光图像可以对应于同一个长曝光参考图像。例如,我们收集了一系列短曝光图像来评估突发去噪方法。序列中的每张图像都被视为一个独特的低光照图像,因为每张图像都包含真实的成像伪影,并且对于训练和测试都是有用的。SID中不同长曝光参考图像的数量是424。
在这里插入图片描述
该数据集包含室内和室外图像。室外图像通常在夜间捕获,月光或路灯下。室外场景中相机的照度通常在0.2 lux到5 lux之间。室内图像甚至更暗。它们是在关闭房间内,关闭常规灯光,并为此目的设置的微弱间接照明下捕获的。室内场景中相机的照度通常在0.03 lux到0.3 lux之间。

4. 全连接深度学习模型实现

4.1. 流程

为了提升低光照条件下单张图像的直接处理能力,我们设计并构建了一个深度学习网络,该网络采用端到端的学习方式,能够快速处理这类图像。具体而言,我们训练了一个全卷积网络(FCN),来完成整个图像处理的流程。近期的研究表明,纯粹的FCN能够有效地实现众多图像处理算法,这一发现激发了我们的灵感,并促使我们探索这种方法在极低光照成像领域的应用。

经过初步的探索,我们决定专注于两种全卷积网络的通用架构,它们构成了我们流程的核心:一种是最近在快速图像处理中采用的多尺度上下文聚合网络(CAN),另一种是U-Net。尽管其他研究工作探讨了残差连接的应用,但我们在当前的实验设置中并未发现其带来显著益处,这可能是因为我们的输入和输出图像采用了不同的颜色空间。此外,我们还考虑了内存消耗的问题,因此选择了能够在GPU内存中处理全分辨率图像(如4240×2832或6000×4000分辨率)的架构。基于这些考虑,我们避免了使用需要处理小图像块并重新组合的全连接层。最终,我们选择U-Net作为默认的网络架构。

图2:通用U-Net架构
在这里插入图片描述

4.2. 训练

通过这种训练方法,网络能够学习如何从短曝光的低光照图像中恢复出高质量的视觉效果,以匹配长曝光图像的细节和清晰度。

5. 实验结果

(a) 经典方法

一旦我们遵循了使用块匹配和3D去噪的经典方法,我们得到了如下的输出:

图4:使用BM3D(块匹配和3D去噪)增强后的输出
在这里插入图片描述
我们通过这种方法获得的PSNR是15.64 dB。

我们还选择了另一种方法,称为使用改进的暗通道和大气散射的图像去雾。输出如下:

图5:图像去雾增强后的输出
在这里插入图片描述
然而,在应用这种方法后,PSNR显著提高(17.10 dB)。

(b) 使用CNN的基于深度学习的方法:

传统方法没有产生更好的暗图像重建,我们可以确定相应的PSNR。然而,使用U-Net架构的最新CNN模型提供了远更好的结果,我们可以在这里观察到。

2个周期后的输出

图6:从左到右:输入短曝光图像,地面真实长曝光图像,预测输出
在这里插入图片描述
10个周期后的输出

图7:从左到右:输入短曝光图像,地面真实长曝光图像,预测输出
在这里插入图片描述
40个周期后的输出
图8:从左到右:输入短曝光图像,地面真实长曝光图像,预测输出
在这里插入图片描述
遵循这种基于深度学习的方法,我们获得:

(a) 平均绝对误差:0.08

(b) PSNR:23.81 dB

我们当然可以推断,在这种情况下,PSNR已经显著提高。

6. 结论

在这种场景中,传统的图像增强方法对于暗图像的效果并不好,而基于深度学习的全连接CNN大大提高了性能。
在这里,我们考虑了See-in-the-Dark(SID)数据集,该数据集是为了支持开发可能实现这种极端成像的数据驱动方法而创建的。使用SID,我们开发了一个简单的流程,改进了对低光照图像的传统处理。所提出的流程基于端到端训练的全卷积网络。
然而,这种分析为进一步的范围和研究开辟了许多机会。我们没有解决HDR色调映射问题。SID数据集的局限性在于不包含人类和动态对象。然而,这种呈现的流程的结果仍然需要完善,并且可以改进。
SID数据集的另一个缺点是处理全分辨率图像的延迟。这将使整个流程在实时处理中显著变慢。然而,可以使用适当的优化技术实时生成低分辨率预览。

### UNetUNet++ 和 UNet3+ 模型架构及其特点 #### UNet 架构 UNet 是一种用于生物医学图像分割的经典卷积神经网络模型。其核心特点是编码器-解码器结构加上跳跃连接,使得低级特征可以直接传递到高级特征层面,从而保留更多细节信息[^1]。 ```python class UNet(nn.Module): def __init__(self, n_channels, n_classes): super(UNet, self).__init__() # 编码路径 (Contracting path) ... # 解码路径 (Expansive path) with skip connections ... def forward(self, x): # 实现前向传播逻辑 pass ``` #### UNet++ 架构 相比于原始的UNetUNet++通过增加更多的密集跳过连接来增强特征重用和融合能力。这种设计不仅加深了网络层次间的交互,而且允许更灵活地调整网络深度以适应不同类型的数据集需求[^2]。 ```python class UNetPlusPlus(nn.Module): def __init__(self, n_channels, n_classes, depth=4): super(UNetPlusPlus, self).__init__() # 更复杂的嵌套跳跃连接机制 ... def forward(self, x): # 前向传播实现 pass ``` #### UNet3+ 架构 作为进一步的发展,UNet3+专注于提高边界的精确定位精度。该版本在网络内部引入了额外的设计元素,比如更深的监督(Deep Supervision),即在整个网络的不同阶段提供多个辅助输出分支来进行联合训练,以此提升整体性能并改善最终预测的质量[^3]。 ```python class UNetThreePlus(nn.Module): def __init__(self, n_channels, n_classes): super(UNetThreePlus, self).__init__() # 添加 deep supervision layers ... def forward(self, x): outputs = [] # 计算各个级别的输出 for i in range(num_levels): out_i = ... # 各级别输出计算 outputs.append(out_i) final_output = torch.sum(outputs, dim=0) # 或者采用其他聚合策略 return final_output ``` #### 区别总结 - **UNet**: 提供基础框架,具有简单有效的编码器-解码器结构以及必要的跳跃链接。 - **UNet++**: 在此基础上增加了复杂度更高的跳跃连接模式,支持自定义层数配置优化特定应用场景下的表现。 - **UNet3+**: 集成了上述两种变体的优点,并特别强调了边界检测准确性方面的改进措施,如deep supervision等技术的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackie_AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值