matlab 中_如何构建实现 基于LSTM的电池容量提取和锂电池剩余寿命预测系统
如何构建实现 基于LSTM的电池容量提取和锂电池剩余寿命预测系统
文章目录
容量提取含B0005,B0006,B0007,B0018四个电池情况
双击main直接运行
1、附“电池容量提取”和“锂电池寿命预测”代码和NASA的电池数据
🔥计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!
🚀B站项目实战:https://space.bilibili.com/364224477
😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏
📂QQ+加:673276993
🤵♂代做需求:@个人主页
创建一系列MATLAB脚本:
附:仅供参考
包括“电池容量提取”和“锂电池寿命预测”的代码以及如何使用NASA的电池数据,创建MATLAB脚本。脚本将涵盖从数据加载、预处理、模型训练、预测到结果评估的所有步骤,附详细的中文注释。
目录结构
确保你的项目文件夹按照以下结构组织:
battery-lifetime-prediction/
├── data/ # 存放NASA电池数据集
│ ├── B0005.mat # 电池B0005的数据
│ ├── B0006.mat # 电池B0006的数据
│ ├── B0007.mat # 电池B0007的数据
│ └── B0018.mat # 电池B0018的数据
├── main.m # 主程序入口
├── load_data.m # 数据加载与预处理函数
├── extract_capacity.m # 电池容量提取函数
├── train_lstm.m # LSTM模型训练函数
├── predict_lifetime.m # 寿命预测函数
└── evaluate_model.m # 模型评估函数
main.m (主程序)
function main()
% 设置随机种子以保证结果可复现
rng(1); % 设置随机数生成器的种子为1
% 加载数据
disp('加载数据...');
[XTrain, YTrain, XTest, YTest] = load_data(); % 调用load_data函数加载并预处理数据
% 提取电池容量
disp('提取电池容量...');
capacities = extract_capacity(XTrain, YTrain);
% 训练模型
disp('训练模型...');
net = train_lstm(XTrain, YTrain); % 使用训练数据训练LSTM模型
% 预测未来容量
disp('预测未来容量...');
predictedCapacity = predict_lifetime(net, XTest); % 使用测试数据进行预测
% 评估模型性能
disp('评估模型性能...');
evaluate_model(predictedCapacity, YTest); % 评估模型并打印评价指标
end
load_data.m (数据加载与预处理)
function [XTrain, YTrain, XTest, YTest] = load_data()
% 加载NASA提供的电池数据文件
dataFiles = {'data/B0005.mat', 'data/B0006.mat', 'data/B0007.mat', 'data/B0018.mat'};
allCapacities = cellfun(@(file) load(file).cycle_life.capacity, dataFiles, 'UniformOutput', false);
% 注意:上述语句假设每个.mat文件中有一个名为'cycle_life.capacity'的变量表示历史容量。
% 如果实际变量名不同,请根据实际情况修改。
% 将所有电池数据合并为一个数组
capacities = vertcat(allCapacities{:});
% 归一化处理,将数据映射到[0, 1]区间
minCap = min(capacities(:));
maxCap = max(capacities(:));
normalizedCapacities = (capacities - minCap) / (maxCap - minCap);
% 创建序列数据用于LSTM输入,这里我们使用滑动窗口的方法创建输入输出对
seqLength = 30; % 可以根据需要调整序列长度
X = [];
Y = [];
for i = 1:(length(normalizedCapacities) - seqLength)
X = [X; normalizedCapacities(i:i+seqLength-2)]; % 当前时间步及之前的seqLength-1个时间步作为输入
Y = [Y; normalizedCapacities(i+seqLength-1)]; % 下一个时间步作为输出
end
% 分割训练集和测试集,80%的数据用于训练,20%用于测试
splitRatio = 0.8;
numTrain = floor(splitRatio * length(Y));
XTrain = X(1:numTrain, :);
YTrain = Y(1:numTrain);
XTest = X(numTrain+1:end, :);
YTest = Y(numTrain+1:end);
% 调整维度以适应LSTM输入要求(时间步 × 特征数 × 批次大小)
XTrain = reshape(XTrain', [seqLength, 1, []]);
XTest = reshape(XTest', [seqLength, 1, []]);
end
extract_capacity.m (电池容量提取)
function capacities = extract_capacity(XTrain, YTrain)
% 这里简单地返回了训练数据中的容量值,实际上可以根据需要实现更复杂的容量提取算法
% 例如,可以计算每次充电后的最大容量或者平均容量等
% 在此示例中,我们直接返回YTrain作为容量值
capacities = YTrain;
end
train_lstm.m (LSTM模型训练)
function net = train_lstm(XTrain, YTrain)
% 定义LSTM网络架构
numFeatures = 1; % 输入特征数量
numResponses = 1; % 输出响应数量
numHiddenUnits = 200; % LSTM层隐藏单元的数量
layers = [
sequenceInputLayer(numFeatures) % 输入层,接受时间序列数据
lstmLayer(numHiddenUnits, 'OutputMode', 'sequence') % LSTM层,设置输出模式为序列
fullyConnectedLayer(numResponses) % 全连接层,用于回归任务
regressionLayer]; % 回归层,计算预测值与真实值之间的误差
% 设置训练选项
options = trainingOptions('adam', ... % 使用Adam优化算法
'MaxEpochs', 250, ... % 最大迭代次数
'MiniBatchSize', 20, ... % 每批训练样本数
'InitialLearnRate', 0.005, ... % 初始学习率
'GradientThreshold', 1, ... % 梯度阈值,防止梯度爆炸
'Verbose', 0, ... % 不显示训练进度信息
'Plots', 'training-progress'); % 显示训练进度图
% 开始训练LSTM网络
net = trainNetwork(XTrain, YTrain, layers, options);
end
predict_lifetime.m (寿命预测)
function predictedCapacity = predict_lifetime(net, XTest)
% 使用训练好的LSTM模型对未来容量进行预测
predictedCapacity = predict(net, XTest);
end
evaluate_model.m (模型评估)
function evaluate_model(predictedCapacity, YTest)
% 计算评价指标
R2 = 1 - sum((predictedCapacity - YTest).^2) / sum((YTest - mean(YTest)).^2); % 决定系数R²
MAE = mean(abs(predictedCapacity - YTest)); % 平均绝对误差MAE
MSE = mean((predictedCapacity - YTest).^2); % 均方误差MSE
RMSE = sqrt(MSE); % 均方根误差RMSE
RPD = std(YTest) / RMSE; % 相对预测误差RPD
% 打印评价指标
fprintf('决定系数(R²): %.4f\n', R2);
fprintf('平均绝对误差(MAE): %.4f\n', MAE);
fprintf('均方误差(MSE): %.4f\n', MSE);
fprintf('均方根误差(RMSE): %.4f\n', RMSE);
fprintf('相对预测误差(RPD): %.4f\n', RPD);
% 绘制预测结果对比图
figure;
plot(YTest, 'b-', 'LineWidth', 2); % 真实值用蓝色实线表示
hold on;
plot(predictedCapacity, 'r--', 'LineWidth', 2); % 预测值用红色虚线表示
legend('真实值', '预测值');
xlabel('循环次数');
ylabel('归一化后的容量');
title('电池容量预测结果');
grid on;
end
NASA电池数据说明
NASA电池数据集通常包含了多个电池在不同条件下的充放电循环记录。每个.mat
文件可能包含如下字段:
在上面的load_data.m
脚本中,我们假设每个.mat文件中有一个名为cycle_life.capacity
的变量表示历史容量。如果实际变量名不同,请根据实际情况修改加载逻辑。
更换RNN类型
要更换为BiLSTM、GRU或BiGRU,只需修改train_lstm.m
中的网络定义部分。
2、提取NASA数据集的电池容量,此处以以历史容量作为输入,采用迭代预测的方法对未来的容量进行预测,用NASA的B0005号 电池数据作为数据集。
3、LSTM可更换为BiLSTM、GRU、BiGRU
如何更换呢?
换LSTM层为BiLSTM、GRU或BiGRU,主要涉及到修改train_lstm.m
文件中的网络定义部分。MATLAB提供了内置的支持来创建这些不同类型的循环神经网络(RNN)层。
更换为BiLSTM
双向长短期记忆网络(BiLSTM)能够同时处理时间序列数据的正向和反向信息,有助于捕捉更复杂的模式。在MATLAB中,可以通过使用bilstmLayer
函数来创建一个BiLSTM层。
function net = train_bilstm(XTrain, YTrain)
% 定义BiLSTM网络架构
numFeatures = 1; % 输入特征数量
numResponses = 1; % 输出响应数量
numHiddenUnits = 200; % BiLSTM层隐藏单元的数量
layers = [
sequenceInputLayer(numFeatures) % 输入层,接受时间序列数据
bilstmLayer(numHiddenUnits, 'OutputMode', 'sequence') % 双向LSTM层,设置输出模式为序列
fullyConnectedLayer(numResponses) % 全连接层,用于回归任务
regressionLayer]; % 回归层,计算预测值与真实值之间的误差
% 设置训练选项
options = trainingOptions('adam', ... % 使用Adam优化算法
'MaxEpochs', 250, ... % 最大迭代次数
'MiniBatchSize', 20, ... % 每批训练样本数
'InitialLearnRate', 0.005, ... % 初始学习率
'GradientThreshold', 1, ... % 梯度阈值,防止梯度爆炸
'Verbose', 0, ... % 不显示训练进度信息
'Plots', 'training-progress'); % 显示训练进度图
% 开始训练BiLSTM网络
net = trainNetwork(XTrain, YTrain, layers, options);
end
更换为GRU
门控循环单元(GRU)是另一种简化版本的循环神经网络,它通过减少内部参数的数量来提高训练效率。可以使用gruLayer
函数创建一个GRU层。
function net = train_gru(XTrain, YTrain)
% 定义GRU网络架构
numFeatures = 1; % 输入特征数量
numResponses = 1; % 输出响应数量
numHiddenUnits = 200; % GRU层隐藏单元的数量
layers = [
sequenceInputLayer(numFeatures) % 输入层,接受时间序列数据
gruLayer(numHiddenUnits, 'OutputMode', 'sequence') % GRU层,设置输出模式为序列
fullyConnectedLayer(numResponses) % 全连接层,用于回归任务
regressionLayer]; % 回归层,计算预测值与真实值之间的误差
% 设置训练选项
options = trainingOptions('adam', ... % 使用Adam优化算法
'MaxEpochs', 250, ... % 最大迭代次数
'MiniBatchSize', 20, ... % 每批训练样本数
'InitialLearnRate', 0.005, ... % 初始学习率
'GradientThreshold', 1, ... % 梯度阈值,防止梯度爆炸
'Verbose', 0, ... % 不显示训练进度信息
'Plots', 'training-progress'); % 显示训练进度图
% 开始训练GRU网络
net = trainNetwork(XTrain, YTrain, layers, options);
end
更换为BiGRU
双向门控循环单元(BiGRU)结合了GRU的速度优势和双向处理的能力。你可以用bgruLayer
函数来创建一个BiGRU层。不过请注意,MATLAB并没有直接提供bgruLayer
函数,你需要手动构建两个GRU层并分别处理正向和反向输入。
function net = train_bigru(XTrain, YTrain)
% 定义BiGRU网络架构
numFeatures = 1; % 输入特征数量
numResponses = 1; % 输出响应数量
numHiddenUnits = 200; % GRU层隐藏单元的数量
% 正向GRU层
forwardLayers = [
sequenceInputLayer(numFeatures)
gruLayer(numHiddenUnits, 'OutputMode', 'sequence')
fullyConnectedLayer(numResponses)];
% 反向GRU层
backwardLayers = [
sequenceInputLayer(numFeatures)
gruLayer(numHiddenUnits, 'OutputMode', 'sequence')
fullyConnectedLayer(numResponses)];
% 合并正向和反向GRU层的输出
combinedLayers = [
forwardLayers
backwardLayers
additionLayer(2) % 将正向和反向GRU层的结果相加
regressionLayer];
% 创建DAG网络(有向无环图),以便同时包含正向和反向路径
lgraph = layerGraph();
lgraph = addLayers(lgraph, forwardLayers);
lgraph = addLayers(lgraph, backwardLayers);
lgraph = connectLayers(lgraph, 'fc_forward', 'add/in1');
lgraph = connectLayers(lgraph, 'fc_backward', 'add/in2');
% 设置训练选项
options = trainingOptions('adam', ... % 使用Adam优化算法
'MaxEpochs', 250, ... % 最大迭代次数
'MiniBatchSize', 20, ... % 每批训练样本数
'InitialLearnRate', 0.005, ... % 初始学习率
'GradientThreshold', 1, ... % 梯度阈值,防止梯度爆炸
'Verbose', 0, ... % 不显示训练进度信息
'Plots', 'training-progress'); % 显示训练进度图
% 开始训练BiGRU网络
net = trainNetwork(XTrain, YTrain, lgraph, options);
end
对于BiGRU,上述代码示例如何使用DAG(Directed Acyclic Graph)网络结构来构建一个包含正向和反向GRU层的网络。这种方法可能比较复杂,并且MATLAB官方并不直接支持这种组合。使用BiGRU,建议考虑其他框架TensorFlow或PyTorch,提供了更直接的方式来实现这一功能。
注:
1⃣、运行环境要求MATLAB版本为2018b及其以上
2⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等
3⃣、代码中文注释
4⃣、fu测试数据集,可以直接运行源程序。替换你的数据yekeyi。
以下文字及代码仅供参考!
MATLAB代码框架,包括电池容量提取和锂电池剩余寿命预测,以下是完整的代码实现。,双击main.m
文件启动整个过程。代码中包含了LSTM模型的训练、预测以及结果评估的功能,并提供了对NASA电池数据集的支持。
目录结构
首先,确保你的项目文件夹按照以下结构组织:
battery-lifetime-prediction/
├── data/ # 存放NASA电池数据集
│ ├── B0005.mat # 电池B0005的数据
│ ├── B0006.mat # 电池B0006的数据
│ ├── B0007.mat # 电池B0007的数据
│ └── B0018.mat # 电池B0018的数据
├── main.m # 主程序入口
├── load_data.m # 数据加载与预处理函数
├── train_lstm.m # LSTM模型训练函数
├── predict_capacity.m # 容量预测函数
└── evaluate_model.m # 模型评估函数
main.m (主程序)
function main()
% 设置随机种子以保证结果可复现
rng(1); % 设置随机数生成器的种子为1
% 加载数据
disp('加载数据...');
[XTrain, YTrain, XTest, YTest] = load_data(); % 调用load_data函数加载并预处理数据
% 训练模型
disp('训练模型...');
net = train_lstm(XTrain, YTrain); % 使用训练数据训练LSTM模型
% 预测未来容量
disp('预测未来容量...');
predictedCapacity = predict_capacity(net, XTest); % 使用测试数据进行预测
% 评估模型性能
disp('评估模型性能...');
evaluate_model(predictedCapacity, YTest); % 评估模型并打印评价指标
end
load_data.m (数据加载与预处理)
function [XTrain, YTrain, XTest, YTest] = load_data()
% 加载NASA提供的电池数据文件
dataFiles = {'data/B0005.mat', 'data/B0006.mat', 'data/B0007.mat', 'data/B0018.mat'};
allCapacities = cellfun(@(file) load(file).cycle_life.capacity, dataFiles, 'UniformOutput', false);
% 注意:上述语句假设每个.mat文件中有一个名为'cycle_life.capacity'的变量表示历史容量。
% 如果实际变量名不同,请根据实际情况修改。
% 将所有电池数据合并为一个数组
capacities = vertcat(allCapacities{:});
% 归一化处理,将数据映射到[0, 1]区间
minCap = min(capacities(:));
maxCap = max(capacities(:));
normalizedCapacities = (capacities - minCap) / (maxCap - minCap);
% 创建序列数据用于LSTM输入,这里我们使用滑动窗口的方法创建输入输出对
seqLength = 30; % 可以根据需要调整序列长度
X = [];
Y = [];
for i = 1:(length(normalizedCapacities) - seqLength)
X = [X; normalizedCapacities(i:i+seqLength-2)]; % 当前时间步及之前的seqLength-1个时间步作为输入
Y = [Y; normalizedCapacities(i+seqLength-1)]; % 下一个时间步作为输出
end
% 分割训练集和测试集,80%的数据用于训练,20%用于测试
splitRatio = 0.8;
numTrain = floor(splitRatio * length(Y));
XTrain = X(1:numTrain, :);
YTrain = Y(1:numTrain);
XTest = X(numTrain+1:end, :);
YTest = Y(numTrain+1:end);
% 调整维度以适应LSTM输入要求(时间步 × 特征数 × 批次大小)
XTrain = reshape(XTrain', [seqLength, 1, []]);
XTest = reshape(XTest', [seqLength, 1, []]);
end
train_lstm.m (LSTM模型训练)
function net = train_lstm(XTrain, YTrain)
% 定义LSTM网络架构
numFeatures = 1; % 输入特征数量
numResponses = 1; % 输出响应数量
numHiddenUnits = 200; % LSTM层隐藏单元的数量
layers = [
sequenceInputLayer(numFeatures) % 输入层,接受时间序列数据
lstmLayer(numHiddenUnits, 'OutputMode', 'sequence') % LSTM层,设置输出模式为序列
fullyConnectedLayer(numResponses) % 全连接层,用于回归任务
regressionLayer]; % 回归层,计算预测值与真实值之间的误差
% 设置训练选项
options = trainingOptions('adam', ... % 使用Adam优化算法
'MaxEpochs', 250, ... % 最大迭代次数
'MiniBatchSize', 20, ... % 每批训练样本数
'InitialLearnRate', 0.005, ... % 初始学习率
'GradientThreshold', 1, ... % 梯度阈值,防止梯度爆炸
'Verbose', 0, ... % 不显示训练进度信息
'Plots', 'training-progress'); % 显示训练进度图
% 开始训练LSTM网络
net = trainNetwork(XTrain, YTrain, layers, options);
end
predict_capacity.m (容量预测)
function predictedCapacity = predict_capacity(net, XTest)
% 使用训练好的LSTM模型对未来容量进行预测
predictedCapacity = predict(net, XTest);
end
evaluate_model.m (模型评估)
function evaluate_model(predictedCapacity, YTest)
% 计算评价指标
R2 = 1 - sum((predictedCapacity - YTest).^2) / sum((YTest - mean(YTest)).^2); % 决定系数R²
MAE = mean(abs(predictedCapacity - YTest)); % 平均绝对误差MAE
MSE = mean((predictedCapacity - YTest).^2); % 均方误差MSE
RMSE = sqrt(MSE); % 均方根误差RMSE
RPD = std(YTest) / RMSE; % 相对预测误差RPD
% 打印评价指标
fprintf('决定系数(R²): %.4f\n', R2);
fprintf('平均绝对误差(MAE): %.4f\n', MAE);
fprintf('均方误差(MSE): %.4f\n', MSE);
fprintf('均方根误差(RMSE): %.4f\n', RMSE);
fprintf('相对预测误差(RPD): %.4f\n', RPD);
% 绘制预测结果对比图
figure;
plot(YTest, 'b-', 'LineWidth', 2); % 真实值用蓝色实线表示
hold on;
plot(predictedCapacity, 'r--', 'LineWidth', 2); % 预测值用红色虚线表示
legend('真实值', '预测值');
xlabel('循环次数');
ylabel('归一化后的容量');
title('电池容量预测结果');
grid on;
end