基于LSTM的电池容量提取和锂电池剩余寿命预测系统

matlab 中_如何构建实现 基于LSTM的电池容量提取和锂电池剩余寿命预测系统

如何构建实现 基于LSTM的电池容量提取和锂电池剩余寿命预测系统

文章目录

容量提取含B0005,B0006,B0007,B0018四个电池情况

双击main直接运行

1、附“电池容量提取”和“锂电池寿命预测”代码和NASA的电池数据

🔥计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!
🚀B站项目实战:https://space.bilibili.com/364224477
😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏
📂QQ+加:673276993
🤵‍♂代做需求:@个人主页
创建一系列MATLAB脚本:
附:仅供参考

包括“电池容量提取”和“锂电池寿命预测”的代码以及如何使用NASA的电池数据,创建MATLAB脚本。脚本将涵盖从数据加载、预处理、模型训练、预测到结果评估的所有步骤,附详细的中文注释。

目录结构

确保你的项目文件夹按照以下结构组织:

battery-lifetime-prediction/
├── data/                # 存放NASA电池数据集
│   ├── B0005.mat        # 电池B0005的数据
│   ├── B0006.mat        # 电池B0006的数据
│   ├── B0007.mat        # 电池B0007的数据
│   └── B0018.mat        # 电池B0018的数据
├── main.m               # 主程序入口
├── load_data.m          # 数据加载与预处理函数
├── extract_capacity.m   # 电池容量提取函数
├── train_lstm.m         # LSTM模型训练函数
├── predict_lifetime.m   # 寿命预测函数
└── evaluate_model.m     # 模型评估函数

main.m (主程序)
function main()
    % 设置随机种子以保证结果可复现
    rng(1); % 设置随机数生成器的种子为1
    
    % 加载数据
    disp('加载数据...');
    [XTrain, YTrain, XTest, YTest] = load_data(); % 调用load_data函数加载并预处理数据
    
    % 提取电池容量
    disp('提取电池容量...');
    capacities = extract_capacity(XTrain, YTrain);
    
    % 训练模型
    disp('训练模型...');
    net = train_lstm(XTrain, YTrain); % 使用训练数据训练LSTM模型
    
    % 预测未来容量
    disp('预测未来容量...');
    predictedCapacity = predict_lifetime(net, XTest); % 使用测试数据进行预测
    
    % 评估模型性能
    disp('评估模型性能...');
    evaluate_model(predictedCapacity, YTest); % 评估模型并打印评价指标
end

load_data.m (数据加载与预处理)
function [XTrain, YTrain, XTest, YTest] = load_data()
    % 加载NASA提供的电池数据文件
    dataFiles = {'data/B0005.mat', 'data/B0006.mat', 'data/B0007.mat', 'data/B0018.mat'};
    
    allCapacities = cellfun(@(file) load(file).cycle_life.capacity, dataFiles, 'UniformOutput', false);
    % 注意:上述语句假设每个.mat文件中有一个名为'cycle_life.capacity'的变量表示历史容量。
    % 如果实际变量名不同,请根据实际情况修改。
    
    % 将所有电池数据合并为一个数组
    capacities = vertcat(allCapacities{:});
    
    % 归一化处理,将数据映射到[0, 1]区间
    minCap = min(capacities(:));
    maxCap = max(capacities(:));
    normalizedCapacities = (capacities - minCap) / (maxCap - minCap);
    
    % 创建序列数据用于LSTM输入,这里我们使用滑动窗口的方法创建输入输出对
    seqLength = 30; % 可以根据需要调整序列长度
    X = [];
    Y = [];
    for i = 1:(length(normalizedCapacities) - seqLength)
        X = [X; normalizedCapacities(i:i+seqLength-2)]; % 当前时间步及之前的seqLength-1个时间步作为输入
        Y = [Y; normalizedCapacities(i+seqLength-1)];   % 下一个时间步作为输出
    end
    
    % 分割训练集和测试集,80%的数据用于训练,20%用于测试
    splitRatio = 0.8;
    numTrain = floor(splitRatio * length(Y));
    XTrain = X(1:numTrain, :);
    YTrain = Y(1:numTrain);
    XTest = X(numTrain+1:end, :);
    YTest = Y(numTrain+1:end);
    
    % 调整维度以适应LSTM输入要求(时间步 × 特征数 × 批次大小)
    XTrain = reshape(XTrain', [seqLength, 1, []]);
    XTest = reshape(XTest', [seqLength, 1, []]);
end

extract_capacity.m (电池容量提取)
function capacities = extract_capacity(XTrain, YTrain)
    % 这里简单地返回了训练数据中的容量值,实际上可以根据需要实现更复杂的容量提取算法
    % 例如,可以计算每次充电后的最大容量或者平均容量等
    % 在此示例中,我们直接返回YTrain作为容量值
    capacities = YTrain;
end

train_lstm.m (LSTM模型训练)
function net = train_lstm(XTrain, YTrain)
    % 定义LSTM网络架构
    numFeatures = 1; % 输入特征数量
    numResponses = 1; % 输出响应数量
    numHiddenUnits = 200; % LSTM层隐藏单元的数量
    
    layers = [
        sequenceInputLayer(numFeatures) % 输入层,接受时间序列数据
        lstmLayer(numHiddenUnits, 'OutputMode', 'sequence') % LSTM层,设置输出模式为序列
        fullyConnectedLayer(numResponses) % 全连接层,用于回归任务
        regressionLayer]; % 回归层,计算预测值与真实值之间的误差
    
    % 设置训练选项
    options = trainingOptions('adam', ... % 使用Adam优化算法
        'MaxEpochs', 250, ... % 最大迭代次数
        'MiniBatchSize', 20, ... % 每批训练样本数
        'InitialLearnRate', 0.005, ... % 初始学习率
        'GradientThreshold', 1, ... % 梯度阈值,防止梯度爆炸
        'Verbose', 0, ... % 不显示训练进度信息
        'Plots', 'training-progress'); % 显示训练进度图
    
    % 开始训练LSTM网络
    net = trainNetwork(XTrain, YTrain, layers, options);
end

predict_lifetime.m (寿命预测)
function predictedCapacity = predict_lifetime(net, XTest)
    % 使用训练好的LSTM模型对未来容量进行预测
    predictedCapacity = predict(net, XTest);
end

evaluate_model.m (模型评估)
function evaluate_model(predictedCapacity, YTest)
    % 计算评价指标
    R2 = 1 - sum((predictedCapacity - YTest).^2) / sum((YTest - mean(YTest)).^2); % 决定系数R²
    MAE = mean(abs(predictedCapacity - YTest)); % 平均绝对误差MAE
    MSE = mean((predictedCapacity - YTest).^2); % 均方误差MSE
    RMSE = sqrt(MSE); % 均方根误差RMSE
    RPD = std(YTest) / RMSE; % 相对预测误差RPD
    
    % 打印评价指标
    fprintf('决定系数(R²): %.4f\n', R2);
    fprintf('平均绝对误差(MAE): %.4f\n', MAE);
    fprintf('均方误差(MSE): %.4f\n', MSE);
    fprintf('均方根误差(RMSE): %.4f\n', RMSE);
    fprintf('相对预测误差(RPD): %.4f\n', RPD);
    
    % 绘制预测结果对比图
    figure;
    plot(YTest, 'b-', 'LineWidth', 2); % 真实值用蓝色实线表示
    hold on;
    plot(predictedCapacity, 'r--', 'LineWidth', 2); % 预测值用红色虚线表示
    legend('真实值', '预测值');
    xlabel('循环次数');
    ylabel('归一化后的容量');
    title('电池容量预测结果');
    grid on;
end

NASA电池数据说明

NASA电池数据集通常包含了多个电池在不同条件下的充放电循环记录。每个.mat文件可能包含如下字段:

在上面的load_data.m脚本中,我们假设每个.mat文件中有一个名为cycle_life.capacity的变量表示历史容量。如果实际变量名不同,请根据实际情况修改加载逻辑。

更换RNN类型

要更换为BiLSTM、GRU或BiGRU,只需修改train_lstm.m中的网络定义部分。

在这里插入图片描述
在这里插入图片描述

2、提取NASA数据集的电池容量,此处以以历史容量作为输入,采用迭代预测的方法对未来的容量进行预测,用NASA的B0005号 电池数据作为数据集。

3、LSTM可更换为BiLSTM、GRU、BiGRU

如何更换呢?

换LSTM层为BiLSTM、GRU或BiGRU,主要涉及到修改train_lstm.m文件中的网络定义部分。MATLAB提供了内置的支持来创建这些不同类型的循环神经网络(RNN)层。

更换为BiLSTM

双向长短期记忆网络(BiLSTM)能够同时处理时间序列数据的正向和反向信息,有助于捕捉更复杂的模式。在MATLAB中,可以通过使用bilstmLayer函数来创建一个BiLSTM层。

function net = train_bilstm(XTrain, YTrain)
    % 定义BiLSTM网络架构
    numFeatures = 1; % 输入特征数量
    numResponses = 1; % 输出响应数量
    numHiddenUnits = 200; % BiLSTM层隐藏单元的数量
    
    layers = [
        sequenceInputLayer(numFeatures) % 输入层,接受时间序列数据
        bilstmLayer(numHiddenUnits, 'OutputMode', 'sequence') % 双向LSTM层,设置输出模式为序列
        fullyConnectedLayer(numResponses) % 全连接层,用于回归任务
        regressionLayer]; % 回归层,计算预测值与真实值之间的误差
    
    % 设置训练选项
    options = trainingOptions('adam', ... % 使用Adam优化算法
        'MaxEpochs', 250, ... % 最大迭代次数
        'MiniBatchSize', 20, ... % 每批训练样本数
        'InitialLearnRate', 0.005, ... % 初始学习率
        'GradientThreshold', 1, ... % 梯度阈值,防止梯度爆炸
        'Verbose', 0, ... % 不显示训练进度信息
        'Plots', 'training-progress'); % 显示训练进度图
    
    % 开始训练BiLSTM网络
    net = trainNetwork(XTrain, YTrain, layers, options);
end

更换为GRU

门控循环单元(GRU)是另一种简化版本的循环神经网络,它通过减少内部参数的数量来提高训练效率。可以使用gruLayer函数创建一个GRU层。

function net = train_gru(XTrain, YTrain)
    % 定义GRU网络架构
    numFeatures = 1; % 输入特征数量
    numResponses = 1; % 输出响应数量
    numHiddenUnits = 200; % GRU层隐藏单元的数量
    
    layers = [
        sequenceInputLayer(numFeatures) % 输入层,接受时间序列数据
        gruLayer(numHiddenUnits, 'OutputMode', 'sequence') % GRU层,设置输出模式为序列
        fullyConnectedLayer(numResponses) % 全连接层,用于回归任务
        regressionLayer]; % 回归层,计算预测值与真实值之间的误差
    
    % 设置训练选项
    options = trainingOptions('adam', ... % 使用Adam优化算法
        'MaxEpochs', 250, ... % 最大迭代次数
        'MiniBatchSize', 20, ... % 每批训练样本数
        'InitialLearnRate', 0.005, ... % 初始学习率
        'GradientThreshold', 1, ... % 梯度阈值,防止梯度爆炸
        'Verbose', 0, ... % 不显示训练进度信息
        'Plots', 'training-progress'); % 显示训练进度图
    
    % 开始训练GRU网络
    net = trainNetwork(XTrain, YTrain, layers, options);
end

更换为BiGRU

双向门控循环单元(BiGRU)结合了GRU的速度优势和双向处理的能力。你可以用bgruLayer函数来创建一个BiGRU层。不过请注意,MATLAB并没有直接提供bgruLayer函数,你需要手动构建两个GRU层并分别处理正向和反向输入。

function net = train_bigru(XTrain, YTrain)
    % 定义BiGRU网络架构
    numFeatures = 1; % 输入特征数量
    numResponses = 1; % 输出响应数量
    numHiddenUnits = 200; % GRU层隐藏单元的数量
    
    % 正向GRU层
    forwardLayers = [
        sequenceInputLayer(numFeatures)
        gruLayer(numHiddenUnits, 'OutputMode', 'sequence')
        fullyConnectedLayer(numResponses)];
    
    % 反向GRU层
    backwardLayers = [
        sequenceInputLayer(numFeatures)
        gruLayer(numHiddenUnits, 'OutputMode', 'sequence')
        fullyConnectedLayer(numResponses)];
    
    % 合并正向和反向GRU层的输出
    combinedLayers = [
        forwardLayers
        backwardLayers
        additionLayer(2) % 将正向和反向GRU层的结果相加
        regressionLayer];
    
    % 创建DAG网络(有向无环图),以便同时包含正向和反向路径
    lgraph = layerGraph();
    lgraph = addLayers(lgraph, forwardLayers);
    lgraph = addLayers(lgraph, backwardLayers);
    lgraph = connectLayers(lgraph, 'fc_forward', 'add/in1');
    lgraph = connectLayers(lgraph, 'fc_backward', 'add/in2');
    
    % 设置训练选项
    options = trainingOptions('adam', ... % 使用Adam优化算法
        'MaxEpochs', 250, ... % 最大迭代次数
        'MiniBatchSize', 20, ... % 每批训练样本数
        'InitialLearnRate', 0.005, ... % 初始学习率
        'GradientThreshold', 1, ... % 梯度阈值,防止梯度爆炸
        'Verbose', 0, ... % 不显示训练进度信息
        'Plots', 'training-progress'); % 显示训练进度图
    
    % 开始训练BiGRU网络
    net = trainNetwork(XTrain, YTrain, lgraph, options);
end

对于BiGRU,上述代码示例如何使用DAG(Directed Acyclic Graph)网络结构来构建一个包含正向和反向GRU层的网络。这种方法可能比较复杂,并且MATLAB官方并不直接支持这种组合。使用BiGRU,建议考虑其他框架TensorFlow或PyTorch,提供了更直接的方式来实现这一功能。

注:
1⃣、运行环境要求MATLAB版本为2018b及其以上
2⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等
3⃣、代码中文注释
4⃣、fu测试数据集,可以直接运行源程序。替换你的数据yekeyi。

以下文字及代码仅供参考!

MATLAB代码框架,包括电池容量提取和锂电池剩余寿命预测,以下是完整的代码实现。,双击main.m文件启动整个过程。代码中包含了LSTM模型的训练、预测以及结果评估的功能,并提供了对NASA电池数据集的支持。

目录结构

首先,确保你的项目文件夹按照以下结构组织:

battery-lifetime-prediction/
├── data/                # 存放NASA电池数据集
│   ├── B0005.mat        # 电池B0005的数据
│   ├── B0006.mat        # 电池B0006的数据
│   ├── B0007.mat        # 电池B0007的数据
│   └── B0018.mat        # 电池B0018的数据
├── main.m               # 主程序入口
├── load_data.m          # 数据加载与预处理函数
├── train_lstm.m         # LSTM模型训练函数
├── predict_capacity.m   # 容量预测函数
└── evaluate_model.m     # 模型评估函数

main.m (主程序)
function main()
    % 设置随机种子以保证结果可复现
    rng(1); % 设置随机数生成器的种子为1
    
    % 加载数据
    disp('加载数据...');
    [XTrain, YTrain, XTest, YTest] = load_data(); % 调用load_data函数加载并预处理数据
    
    % 训练模型
    disp('训练模型...');
    net = train_lstm(XTrain, YTrain); % 使用训练数据训练LSTM模型
    
    % 预测未来容量
    disp('预测未来容量...');
    predictedCapacity = predict_capacity(net, XTest); % 使用测试数据进行预测
    
    % 评估模型性能
    disp('评估模型性能...');
    evaluate_model(predictedCapacity, YTest); % 评估模型并打印评价指标
end

load_data.m (数据加载与预处理)
function [XTrain, YTrain, XTest, YTest] = load_data()
    % 加载NASA提供的电池数据文件
    dataFiles = {'data/B0005.mat', 'data/B0006.mat', 'data/B0007.mat', 'data/B0018.mat'};
    
    allCapacities = cellfun(@(file) load(file).cycle_life.capacity, dataFiles, 'UniformOutput', false);
    % 注意:上述语句假设每个.mat文件中有一个名为'cycle_life.capacity'的变量表示历史容量。
    % 如果实际变量名不同,请根据实际情况修改。
    
    % 将所有电池数据合并为一个数组
    capacities = vertcat(allCapacities{:});
    
    % 归一化处理,将数据映射到[0, 1]区间
    minCap = min(capacities(:));
    maxCap = max(capacities(:));
    normalizedCapacities = (capacities - minCap) / (maxCap - minCap);
    
    % 创建序列数据用于LSTM输入,这里我们使用滑动窗口的方法创建输入输出对
    seqLength = 30; % 可以根据需要调整序列长度
    X = [];
    Y = [];
    for i = 1:(length(normalizedCapacities) - seqLength)
        X = [X; normalizedCapacities(i:i+seqLength-2)]; % 当前时间步及之前的seqLength-1个时间步作为输入
        Y = [Y; normalizedCapacities(i+seqLength-1)];   % 下一个时间步作为输出
    end
    
    % 分割训练集和测试集,80%的数据用于训练,20%用于测试
    splitRatio = 0.8;
    numTrain = floor(splitRatio * length(Y));
    XTrain = X(1:numTrain, :);
    YTrain = Y(1:numTrain);
    XTest = X(numTrain+1:end, :);
    YTest = Y(numTrain+1:end);
    
    % 调整维度以适应LSTM输入要求(时间步 × 特征数 × 批次大小)
    XTrain = reshape(XTrain', [seqLength, 1, []]);
    XTest = reshape(XTest', [seqLength, 1, []]);
end

train_lstm.m (LSTM模型训练)
function net = train_lstm(XTrain, YTrain)
    % 定义LSTM网络架构
    numFeatures = 1; % 输入特征数量
    numResponses = 1; % 输出响应数量
    numHiddenUnits = 200; % LSTM层隐藏单元的数量
    
    layers = [
        sequenceInputLayer(numFeatures) % 输入层,接受时间序列数据
        lstmLayer(numHiddenUnits, 'OutputMode', 'sequence') % LSTM层,设置输出模式为序列
        fullyConnectedLayer(numResponses) % 全连接层,用于回归任务
        regressionLayer]; % 回归层,计算预测值与真实值之间的误差
    
    % 设置训练选项
    options = trainingOptions('adam', ... % 使用Adam优化算法
        'MaxEpochs', 250, ... % 最大迭代次数
        'MiniBatchSize', 20, ... % 每批训练样本数
        'InitialLearnRate', 0.005, ... % 初始学习率
        'GradientThreshold', 1, ... % 梯度阈值,防止梯度爆炸
        'Verbose', 0, ... % 不显示训练进度信息
        'Plots', 'training-progress'); % 显示训练进度图
    
    % 开始训练LSTM网络
    net = trainNetwork(XTrain, YTrain, layers, options);
end

predict_capacity.m (容量预测)
function predictedCapacity = predict_capacity(net, XTest)
    % 使用训练好的LSTM模型对未来容量进行预测
    predictedCapacity = predict(net, XTest);
end

evaluate_model.m (模型评估)
function evaluate_model(predictedCapacity, YTest)
    % 计算评价指标
    R2 = 1 - sum((predictedCapacity - YTest).^2) / sum((YTest - mean(YTest)).^2); % 决定系数R²
    MAE = mean(abs(predictedCapacity - YTest)); % 平均绝对误差MAE
    MSE = mean((predictedCapacity - YTest).^2); % 均方误差MSE
    RMSE = sqrt(MSE); % 均方根误差RMSE
    RPD = std(YTest) / RMSE; % 相对预测误差RPD
    
    % 打印评价指标
    fprintf('决定系数(R²): %.4f\n', R2);
    fprintf('平均绝对误差(MAE): %.4f\n', MAE);
    fprintf('均方误差(MSE): %.4f\n', MSE);
    fprintf('均方根误差(RMSE): %.4f\n', RMSE);
    fprintf('相对预测误差(RPD): %.4f\n', RPD);
    
    % 绘制预测结果对比图
    figure;
    plot(YTest, 'b-', 'LineWidth', 2); % 真实值用蓝色实线表示
    hold on;
    plot(predictedCapacity, 'r--', 'LineWidth', 2); % 预测值用红色虚线表示
    legend('真实值', '预测值');
    xlabel('循环次数');
    ylabel('归一化后的容量');
    title('电池容量预测结果');
    grid on;
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackie_AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值