自动驾驶汽车如何做决策,各种小的网络构成了大的功能,DriveNet,LightNet,SignNet,WaitNet

61 篇文章 5 订阅

已下架不支持订阅

本文介绍了自动驾驶汽车的决策系统,包括OpenRoadNet识别行驶空间,PathNet规划路径,LaneNet检测车道线,MapNet创建高清地图。此外,DriveNet负责物体检测,LightNet判断交通灯颜色,SignNet识别交通标志,WaitNet检测停车情况,ClearSightNet监控传感器可见度,ParkNet辅助停车。这些深度神经网络共同构建了自动驾驶的安全行驶能力。
摘要由CSDN通过智能技术生成

OpenRoadNet能够识别汽车周围所有可行驶的空间,无论是汽车所在车道还是邻近车道。
PathNet即使在没有车道标记的情况下,也能突出标记车辆前方的可行驶路径。
LaneNet能够检测车道线和其他规定汽车行驶路径的标记。
MapNet也可以识别车道和地标,并用于创建和更新高清地图。
具有路径寻找功能的DNN协同工作为自动驾驶汽车制定安全的行驶路线。

道路物体检测与分类

能够检测潜在路障、交通信号灯及标识的DNN:

DriveNet能够感知道路上的其他车辆、行人、交通灯和标识,但无法识别灯光的颜色以及标识的类型。
LightNet能够对交通灯的颜色状态进行分类 – 红色、黄色或绿色。
SignNet能够识别标志的类型 – 停止,让行,单行道等。
WaitNet能够检测必须停车等待的情况,例如十字路口。
其他功能

能够检测汽车及驾驶舱零部件状态,以及使操作更加便捷(如停车)的DNN:

ClearSightNet能够监测汽车摄像头传感器的可见度,检测限制可见度的状况,如雨,雾和阳光直射。
ParkNet能够识别可用的停车位。
以上这些只是构成冗余和多样化DRIVE软件感知层的深度神经网络示例。

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鼾声鼾语

感谢您的支持鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值