[深度学习从入门到女装]GANs

论文地址:Generative Adversarial Nets

 

Generative Adversarial Nets(GANs)是一种生成式模型,存在两个网络,一个是generative model G用来生成和样本近似的分布,一个是discriminative model D用来辨别真正样本和生成的样本

也就是让D辨别不出真实样本和G生成的样本,便可以结束训练

需要优化的函数如下:

其中x为真实样本,z为生成模型的输入,G(z)为使用输入z生成网络生成的样本,D(x)为使用真实样本x作为输入辨别网络的结果

训练过程达到的目的如上图所示,黑线为真实样本的分布p_{x},绿线为生成模型G产生的分布p_{g},蓝线为判别模型D得到的分布

在最开始的时候,黑线和绿线相差较大(真实样本分布和生成样本分布差别较大),判别模型D得到的分布存在波动

在训练的过程中,黑线和绿线逐渐接近,蓝线趋于稳定

在训练结束时,黑线和绿线完全重合(真实样本分辨和生成样本分布相同),蓝线成为一条直线(0.5)

 

训练算法如上所示,也就是得到输出后先训练判别器D,然后再得到输出,训练生成器G,D和G的训练交替进行

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值