深度学习之Autoencoders & GANs for Anomaly Detection 视频异常检测

在视频异常检测(Video Anomaly Detection)任务中,Autoencoders(自编码器)GANs(生成对抗网络) 是常用的深度学习模型,它们在检测视频中的异常事件(如入侵、破坏、非法行为等)方面发挥着重要作用。通过分析视频帧的时空特征,这些模型能够识别出与正常行为模式不同的异常模式。

1. Autoencoders for Anomaly Detection

Autoencoders 是一种无监督学习模型,由编码器(Encoder)和解码器(Decoder)两部分组成。其主要目标是通过最小化输入与输出之间的重构误差,学习输入数据的低维表示。

(1) Autoencoder的基本原理
  • 编码器:将输入数据映射到潜在空间(通常是一个较低维度的空间)。
  • 解码器:从潜在空间的表示重构原始输入数据。
  • 训练目标:通过重建
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾斯汀玛尔斯

愿我的经历曾为你指明方向

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值