神经网络、结构、权重和矩阵

本文介绍了神经网络中权重的重要性,探讨了权重矩阵的初始化方法,包括使用随机正态分布、均匀分布和二项式分布。文章通过Python示例解释了如何创建和应用权重矩阵,以实现输入层到隐藏层及隐藏层到输出层的计算。
摘要由CSDN通过智能技术生成

介绍

神经网络和 Marvin 中的权重

我们在机器学习教程的前一章中介绍了有关神经网络的基本思想。

我们已经指出了生物学中神经元和神经网络之间的相似性。我们还引入了非常小的人工神经网络,并引入了决策边界和 XOR 问题。

在我们到目前为止介绍的简单示例中,我们看到权重是神经网络的基本部分。在开始编写具有多层的神经网络之前,我们需要仔细查看权重。

我们必须了解如何初始化权重以及如何有效地将权重与输入值相乘。

在接下来的章节中,我们将用 Python 设计一个神经网络,它由三层组成,即输入层、隐藏层和输出层。您可以在下图中看到这种神经网络结构。我们有一个包含三个节点的输入层一世1,一世2,一世3 这些节点得到相应的输入值 X1,X2,X3. 中间或隐藏层有四个节点H1,H2,H3,H4. 该层的输入源于输入层。我们将很快讨论该机制。最后,我们的输出层由两个节点组成○1,○2

输入层与其他层不同。输入层的节点是被动的。这意味着输入神经元不会改变数据,即在这种情况下没有使用权重。他们接收一个值并将这个值复制到他们的许多输出中。

具有 3 个输入、4 个隐藏和 2 个输出节点的神经元网络

输入层由节点组成 一世1, 一世2 和 一世3. 原则上,输入是一维向量,如 (2, 4, 11)。一维向量用 numpy 表示,如下所示:

 numpy 导入 np

输入向量 =  np 数组([ 2 ,  4 ,  11 ])
打印( input_vector )

输出:

[ 2 4 11]

在我们稍后将编写的算法中,我们必须将其转置为列向量,即只有一列的二维数组:

 numpy 导入 np

输入向量 =  np 数组([ 2 ,  4 ,  11 ]) 
input_vector  =  np 数组(input_vector , ndmin = 2 )T
打印“输入向量:\n , input_vector )

打印“这个向量的形状:” , 输入向量形状)

输出:

输入向量:
 [[2]
 [4]
 [11]]
这个向量的形状:(3, 1)

权重和矩阵

我们网络图中的每个箭头

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值