神经网络动画讲解 - 权重W、偏置b和激活函数

神经网络的重要参数

在神经网络中,无论是处理分类任务还是回归任务,权重(W)和偏置(b)都扮演着核心角色。它们通过加权求和和偏置修正的方式,定义了输入特征与输出之间的复杂关系,使得神经网络能够学习并适应各种数据模式。

神经网络的重要参数

权重W和偏置b:在神经网络中,权重(W)和偏置(b)是两个非常重要的参数,它们决定了神经元之间的连接强度和神经元的输出。

  • 权重(W):权重是神经网络中的连接参数,用于描述不同神经元之间的连接强度。在神经网络的前向传播过程中,输入数据会与权重进行加权求和,从而影响神经元的输出。权重的大小和正负决定了输入数据对输出数据的影响程度。

  • 偏置(b):偏置是神经网络中的一个附加参数,用于调整神经元的输出。偏置的作用类似于线性方程中的截距项,它使得神经元的输出可以偏离原点。偏置的存在使得神经网络能够学习更加复杂的函数关系。

权重W和偏置b

激活函数: 激活函数(Activation Function) 是在神经网络中用于将神经元的输入映射到输出端的函数。它决定了节点是否应该被激活(即,是否让信息通过该节点继续在网络中向后传播)。

在神经网络中,输入通过加权求和(权重(W)和偏置(b)),然后被一个函数作用,这个函数就是激活函数。

激活函数

激活函数的主要作用如下:

  1. 增加非线性:神经网络中,如果只有线性变换,那么无论神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当。引入非线性激活函数,使得神经网络逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。

  2. 特征转换:把当前特征空间通过一定的线性映射转换到另一个空间,让数据能够更好地被分类。

激活函数的作用

常见的激活函数包括:Sigmoid、Tanh、Softmax、ReLU、Leaky ReLU

  1. Sigmoid:将输入的连续实值压缩到0和1之间,特别大的负数映射为0,特别大的正数映射为1。但它存在梯度消失和输出不是以0为中心的问题。

  2. Tanh:将输入的连续实值压缩到-1和1之间,输出以0为中心。但它同样存在梯度消失的问题。

  3. Softmax:常用于多分类问题的输出层,将神经元的输出映射到概率分布上。

  4. ReLU (Rectified Linear Unit):当输入大于0时,输出等于输入;当输入小于等于0时,输出为0。ReLU解决了梯度消失的问题,但可能会导致神经元“死亡”的问题。

  5. Leaky ReLU:对ReLU进行了改进,当输入小于0时,给予一个很小的斜率,从而避免神经元“死亡”的问题。

常见的激活函数

传统激活函数 SigmoidSigmoid 是传统神经网络中常用的一种激活函数,尤其在早期的神经网络结构中。

SIgmoid函数公式

Sigmoid 激活函数的特性:

  1. 输出范围:Sigmoid 函数的输出始终在 0 和 1 之间,这使得它经常被用于二分类问题中,其中输出可以解释为属于某一类的概率。

  2. 连续性和可导性:Sigmoid 函数是连续的,并且在整个实数域上都是可导的。这使得基于梯度的优化算法(如反向传播)可以很容易地应用于包含 Sigmoid 激活函数的神经网络。

  3. 中心化问题:Sigmoid 函数的输出不是零中心的(zero-centered)。这意味着当神经元的输入在训练过程中发生变化时,它们的梯度将总是同号(要么都是正的,要么都是负的)。这可能会导致训练过程中权重的更新在特定方向上持续进行,从而导致训练速度变慢或陷入局部最小值。

  4. 梯度饱和:当输入 x 非常大或非常小时,Sigmoid 函数的梯度接近于 0。这被称为梯度饱和或梯度消失。 在反向传播过程中,这可能导致梯度在通过多层网络时迅速减小,从而阻止权重进行有效的更新。

  5. 计算复杂性:与一些现代激活函数(如 ReLU)相比,Sigmoid 函数需要计算指数函数和除法操作,这可能会增加计算成本。

激活函数Sigmoid

主流激活函数ReLU:ReLU(Rectified Linear Unit)是当今深度学习领域中最主流的激活函数之一。

ReLU函数公式

ReLU 激活函数的特性:

  1. 非线性特性:ReLU函数在输入大于0时保持线性关系,而在输入小于等于0时输出为0,这种非线性特性使得神经网络能够学习更复杂的模式和特征。

  2. 计算简单:ReLU函数的计算非常简单,只需要判断输入是否为正数,这在大规模神经网络中能够显著提高计算效率。

  3. 解决梯度消失问题:与传统的Sigmoid和tanh激活函数相比,ReLU函数在输入为正数时导数为1,在输入为负数时导数为0,**这有效地避免了梯度消失问题。**梯度消失问题在深度神经网络训练中是一个常见问题,它会导致网络难以收敛到最优解。

  4. 稀疏性:ReLU函数可以使神经网络中的一部分神经元处于非激活状态(即输出为0),这有助于减少神经网络的计算量和内存消耗,并提高模型的泛化能力。

  5. 加速收敛:由于ReLU函数的非线性特性和计算简单性,它可以帮助神经网络更快地收敛到最优解。

激活函数ReLU

注释

神经网络动画素材来源于3Blue1Brown,想了解更多查看参考资料网址。****

3Blue1Brown 是一个由 Grant Sanderson 创建的YouTube 频道。这个频道从独特的视觉角度解说高等数学,内容包括线性代数、微积分、人工神经网络、黎曼猜想、傅里叶变换以及四元数等。

Grant Sanderson 毕业于斯坦福大学,并获得了数学学士学位。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值