PerformanceWarning: DataFrame is highly fragmented.

PerformanceWarning: DataFrame is highly fragmented.  This is usually the result of calling `frame.insert` many times, which has poor performance.  
Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()

        为了做数据分析,在生成一个DataFrame时,以日期作为行索引,股票名称作为列索引,每只股票的涨跌幅作为列数据。当数据量大的时候,创建的时候会报类似上面的错误。生成的目标DataFrame如下图所示(过去一年以来某些股票的涨跌幅数据):

        出现上述的“DataFrame is highly fragmented”报警,我用的是下面的代码:新建一个空的DataFrame,再逐个添加列。

df = pd.DataFrame()
for company in company_name[:]: # compnay是元素为dataFrame的list
    company.drop_duplicates(subset=['trd_date'], inplace=True)
    df[company['股票简称'].values[0]]=company['涨跌幅']
那么,有什么解决办法呢?         

        1、处理的数据太多的话,报警输出很多,可以关闭掉报警。

import warnings
warnings.simplefilter(action='ignore', category=pd.errors.PerformanceWarning)

        2、按报警提示修改代码,用concat的方法,逐个合并dataFrame。

df = pd.DataFrame()
for company in company_name: # compnay是元素为dataFrame的list
    company.drop_duplicates(subset=['trd_date'], inplace=True)
    df = pd.concat([df, pd.DataFrame({company['股票简称'].values[0]:company['涨跌幅']})], axis=1).copy()

        3、把数据添加到dict中,而后转成dataFrame。

dt = {}
for company in company_name:
    company.drop_duplicates(subset=['trd_date'], inplace=True)
    dt[company['股票简称'].values[0]]=company['涨跌幅']
df = pd.DataFrame(dt)
 最后,我们测试对比 一下性能:

        所以在碰到对dataFrame的行或列频繁进行添加时,避免逐个添加,可以先保存成dict,转换成dataFrame之后,再一次性追加到原有的dataFrame中。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值