SVM 工作原理 数据可以通过画一条直线就可以将它们完全分开,这组数据叫线性可分(linearly separable)数据,而这条分隔直线称为分隔超平面(separating hyperplane)。如果数据集上升到1024维呢?那么需要1023维来分隔数据集,也就说需要N-1维的对象来分隔,这个对象叫做超平面(hyperlane),也就是分类的决策边界。 支持向量(Support Vector)就是离分隔超平面最近的那些点。假设中间的红线是超平面,那么虚线上的样本点就是支持向量。机(Machine)就是表示一种算法,而不是表示机器。 公式推导相关链接 链接1