我们说了好几期的风控建模了,也有不少的同学私信我说一般来说我们需要怎么确定Y值呢?,到底多坏的逾期表现的客户可以被我们定义为坏客户呢?今天这篇文章,就给大家介绍一个大家既熟悉又陌生的分析工具——Vintage Analysis(账龄分析)和Roll Rate Analysis(滚动率分析),希望对大家有一定帮助。
本次文章从以下几个模块来展开说说,先介绍一下理论,然后造一批虚拟数据来实际实现一波加深理解,最后再回归我们的主题。
00 Index
01 Roll Rate Analysis的理论
02 Vintage Analysis 的理论
03 如何确定建模的A卡Y值
01 Roll Rate Analysis的理论
Roll Rate Analysis,即滚动率分析,目的在于确定坏客户的定义逻辑,比如说逾期多少天之后的客户,不会在未来还钱了。为了找到更加准确的坏人,我们这个阈值,不能太小。于是,就有了滚动率分析的方法,来确定这个阈值。
滚动率分析,就是选择一个观测点,向前和向后的一段时间窗口,统计不同档次客户的变化情况,从而来确定坏人的划分标准,具体实现步骤如下:
1,选择观测点,比如20210601;
2,以观测点向前统计6个月内(20201201-20210601),客户的档次分布情况(档次一般