RAG、LangChain、Agent 到底有啥关系?

RAG、LangChain、Agent三者的关系图

img

然后用一句话来概括这张图:

你可以在LangChain框架中使用RAG技术来创建一个Agent,扮演特定的角色专门解决用户的特定需求。

接下来我们按顺序介绍这三个名词。

RAG(检索增强生成):知识增强外挂

RAG(Retrieval-Augmented Generation)的中文名是检索增强生成,是一种使大语言模型在生成回答时能够读取外部信息的技术,该技术可以简单理解为在生成内容前,先从外部数据库中检索出相关信息作为参考。

打一个比方,你读完全日制高中的课程,咱可以说你已经完成了预训练(Pre-training),已经具备了一个通用大模型的基础能力。然后你填报了计算机科学专业,完成四年的专业课学习,咱可以说你已经完成了一轮微调(Fine-Tuning),然后你就是一个合格的可以解决各类基础计算机相关**下游任务(Downstream tasks)**的大模型了.

但毕竟本科四年学习周期有点长,咱想一个速成点的办法就是以你高中掌握的知识,再加上身边放一堆计算机专业的书籍,那这样你有了开卷考的buff+加持,也勉强可以成为一个低配版解答基础计算机相关的问题的大模型了。而你收到问题,基于你高中的知识,在专业书籍中找到答案,组织后反馈给提问者的过程就是检索增强生成(RAG)

由于训练和微调的成本依然高企+超长上下文仍处于理论阶段,所以目前RAG这样的外挂技术在新闻、科技、医疗等领域以及一定规模团队的企业内部智库这些知识更新频繁的场景有着肉眼可见的应用前景。

LangChain:方便快捷地创建AI应用

有了RAG技术,新的问题来了。如何将检索、生成、数据存储、API调用等功能整合到一个整体的应用系统中呢?这时,LangChain便派上了用场。

Langchain是一个用于开发LLM应用的开源框架,旨在帮助开发者更轻松地构建由大语言模型驱动的应用程序。RAG作为大语言模型非常重要的应用领域,LangChain自然也有比较充分的支持而且LangChain还能帮助开发者灵活地设计多步骤工作流,让RAG的结果更可控。

img

举个简单的应用例子,假如我们想构建一个法律咨询应用,它需要完成以下几个步骤

1.接收用户的具体案例;

2.从向量数据库中检索相关法律条款;

3.返回并用大语言模型生成回答;

4.在生成答案前对用户答案的合规性做出提醒。

这个具体的RAG应用实例,通过LangChain可以快速实现。LangChain提供的模块化组件和接口,便于开发者根据具体需求自由组合。对于非资深开发者来说,LangChain的框架大大简化了开发难度,让大家能够轻松实现“搭积木”式的开发。

Agent(智能体):AI执行任务的“代理人”

了解了RAG和LangChain之后,我们再来看看AlAgent的概念。

Agent 是一种可以自主感知环境、做出决策并执行行动的智能体系统。正如它的英文名,Agent相当于一个任务代理人,可以“理解”用户设定的流程、规则后按自己的想法来处理一系列任务

img

如图所示,Agent通常基于大语言模型(LLM),创建者用提示词模板(Prompt Template)来指定它的角色和工作内容;Agent拥有“记性”(Memory),这让它不但可以记得会话的上下文,也可以记得用户的偏好和个性化要求,更好地满足用户的需求;Agent拥有 “行为自主性”(Action) 它在接收指令后,可以通过大语言模型来判断是否需要使用相应的工具来自主完成任务。

由于Agent具备了这些特点,所以比较适用于自动化任务、数字助理、游戏角色等应用。

在LangChain框架中使用RAG技术创建专用的Agent

让我们回到开头的那张图里,这三个名词各自的职责和执行流程如下

LangChain可以为任务提供足够复杂的工作流结构,而Agent则负责根据PromptTemplate的设定执行这些流程中的每一个任务环节。

LangChain框架也提供了各种相应的库对RAG技术进行支持,让RAG技术可以作为Agent从Knowledge Base获取知识的工具。

Agent获得相应的知识后,再由LLM组织并理解,作出返回给客户有用的信息或是执行特定操作的判断,并由Agent来完成。

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### Qwen AgentRAG LangChain 使用指南 #### Jupyter Notebook 部署与安全远程访问 为了有效利用Qwen代理进行开发工作,建议先在Linux服务器上部署Jupyter Notebook并配置安全远程访问环境[^1]。这不仅提供了交互式的编程体验,还便于管理共享代码。 #### RAG 技术概述 复杂问答聊天机器人的核心在于检索增强生成(Retrieval-Augmented Generation, RAG)[^2]。这项技术允许应用基于特定文档集合来提供更精确的回答,减少了传统方法可能出现的信息偏差或错误。 #### LangChain 框架集成 LangChain框架简化了多个API接口之间的连接过程,特别是对于希望快速构建功能丰富的AI系统的开发者而言非常有用[^3]。通过简单的几步操作——获取必要的API密钥、完成软件包安装以及将所需工具挂载至代理服务端口,即可轻松启动项目。 #### 自我纠正机制 Self-RAG 引入自我反思能力(self-reflection),即所谓的Self-RAG体系结构,在提高模型准确性方面表现出色[^4]。它使得大型语言模型能够在检测到潜在误报时自动调整输出内容,进而提升整体性能表现。 ```python from langchain import LangChainAgent import qwen_agent # 初始化LangChain代理实例 agent = LangChainAgent(api_key="your_api_key") # 加载预训练好的Qwen模型作为内部组件 qa_model = qwen_agent.load_pretrained() # 将QA模块注册给代理对象 agent.register_tool(qa_model) def ask_question(query): response = agent.run(query) return response ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值