想转行AI行业?这篇文章告诉你我是如何“半路出家”转行算法工程师的!

#01

关于择业考虑

算法岗是什么?

算法岗,从根本内容上来说,是算法,算力,数据,应用场景的交集。从工作要求的角度来讲,是你的能力能够匹配大厂需要的工作要求。从个人角度来说,是你能够快速迭代和更新所需要的机器学习/深度学习知识+特定项目经历+比赛/相关paper+数据结构,并且能接受加班和kpi绩效化。当然相对来说,工资比较高,而且是未来5年的主航道。

是否能转行到算法岗?

如果你专业也不对口学校也不好,并且还没读过研究生,对这个也没啥项目经验,甚至都找不到同伴或者学习成长机会的话;或者本身又没有很坚定的毅力去转行,或者本身就对这个完全不感兴趣的话,我觉得本帖其实是劝退帖。

因为算法岗是越来越卷,要求是越来越高,发展是越来越快,这几年火过几年可能就烂大街了,不持续更新和发展,你可能还得转行。而且很可能你投入时间和精力和结果不成正比,最重要的是可能还拿不到很好的offer。另外,你说报个班学一下前端开发,或者java开发有一些编程基础会好很多,这个我觉得大概率是可以的,不看出身。

能挣的钱很重要,但是你专心从事软件开发,前后端开发,云上业务,嵌入式或者android开发,测试或者运维的话,努力打拼几年收入也未必会低多少。

算法岗基本要求

大厂的算法岗,硕士现在是基本起步门槛(专业可以不限),也是主力军(等第一批人工智能本科生毕业也是3年以后的事情了)。并且如果你是校招的话,最好成绩能挤进学校前20%,or 学校最好是985/211,毕竟这个才能体现你的学习能力。

能够通过简历大关的,大概率是满足以下多条的应聘者:

1 有相关工作或者对口实习经历;

2 学校好,成绩优秀;

3 有对应paper,专利,或者软著等学术成就;

4 有知名竞赛的top排名,github关注度高,csdn某一领域专家或者知乎专栏专家等;

如果你能做到、或者下定决心做到以上四点中的二点以上,我觉得其实你选择这条路,跟万千大众一起卷还是能活下去的。

#02

本人“转行”经历

本人本科毕业于西南某末流985,研究生毕业于某top QS15,控制工程专业。最开始主要研究领域是做低压电控制。研究生毕业后在菊花厂主要做开发工作,并不是专门做机器视觉的或者CS科班出身。后来也是因为机缘巧合,感觉做CV算法落地非常有前景,所以加入某创业公司成长和学习,在对目标检测的工业应用较为熟悉之后,就去面了一些匹配的工作,斩获阿里,之江,海康等大厂offer,准备开始新一段征程。

分享一下我这一年的入门经验,让更多的小白能够少走弯路、顺利转行,早日走上人生巅峰。

#03

主航道选择

CV, NLP,时间序列,推荐算法,语音

推荐算法的话,应该是需要大数据(hadoop/spark)+推荐算法结合,主要可以去的是电商,自媒体平台等;

NLP的话,应该是数据分析+nlp;

时间序列,做风险评估和预测,模型分析等;

CV的话,主要涉及到目标检测/分割 or GAN or SLAM,主要应用在安防,缺陷检测,自动驾驶,AIOT方面,传统的一些目标检测类的项目主要是在做工业应用的落地这两年比较火,例如商汤工业、阿里大脑or CBU等,学术上发展其实划时代作品日趋减少;也有一些人脸和GAN的超分辨等应用在新媒体和手机等;还有更超前的NAS,transform等,落地和大范围推广也许还需要几年。

语音:以此为主的相对略少,例如科大讯飞,各厂的智能音箱等;

选择一个你感兴趣,并且有资源或者学习机会能够不断学习和进步的方向。感觉卷的程度是: CV>推荐算法>NLP>时间序列>语音,机会概率现在也是如此排序。

我个人还是结合自己经历,这两年还是看好目标检测的落地和AIOT的发展。但是再往后发展,还是多模态更有优势和钱途。下面分享内容也是按照目标检测的入门内容做分享。

#04

基础知识准备

算法工程师,或者机器视觉算法工程师,前提是工程师,然后才是算法。所以要先提升工程实践能力达标,然后再去理解算法,最后只求性能和准确度,实现落地。

01

数学:

尤其是线性代数,概率论,高数,凸优化等

建议大家找原来的教材或者内容捡起来,或者找一些基础视频看看,要是实在没时间就先跳过,用到再去详细学。

推荐3Blue1Brown :

https://space.bilibili.com/88461692?from=search&seid=9191144388979767424

02

编程语言

python: 这个是一门需要必会的语言,会用非常简单,但是写得好还是需要一定难度、并且安装包非常多,建议刷题时候选用。主要是用来实现模型的搭建,算法的测试,效果的评估等。

c++: 这个是一门需要会使用的预言,精通还是挺难的。但是在落地项目,模型速度优化和部署,cuda的时候可能会使用到。是商业落地的必备,在做SLAM或者ROS的时候是基本功。

这个只能说会用,离精通确实还差不少。

03

数据结构

如果是找工作为前提的话,根据自己情况选择:

如果从来没有学过数据结构,建议郝斌版本的入门教程;

如果没时间的话建议快速过一遍《剑指offer》,大概2周左右;

如果时间充裕情况下,建议留2个月时间每天好好刷题(剑指offer+leetcode);

如果是大神追求能力提高,请上猛书《算法导论》!

04

传统数字图像处理基础

很多时候,其实会用到很多传统图像处理知识,例如说帧差法,hsv或者rgb转换等。所以需要OpenCV库函数使用非常6,最好一些基础知识能过一遍。

05

Linux

推荐:《鸟叔的私房菜》

#05

算法框架

我推荐keras, pytorch

keras: 已经被封装到了tf2.x中现在。最开始使用的理由,是因为他可以把繁琐的tf1.x都封装的很好,留出接口便捷调用。

推荐入门书籍:

keras之父的《python深度学习》

img

pytorch:因为学界很多论文都是使用这个,并且有可以和tensorflow抗衡的发展态势。还是强力建议使用,并且通过onnx转换成为其他格式也是方便。

推荐:Yunjey Choi 大佬的 Github 教程,简单入门:

项目地址:

https://github.com/yunjey/pytorch-tutorial

#06

机器学习基础

理论内容推荐:

A.基础入门,就是吴恩达老师课程:

https://www.bilibili.com/video/BV164411b7dx?from=search&seid=13060513750123607767

B.面试之前快速过一遍,李航老师–《统计学习方法(第二版)》

C.查漏补缺的、比较全面的工具书,周志华老师–《机器学习》(俗称“西瓜书”,可以搭配“南瓜书”)

AI有“四大名著”:

img

实战推荐:

关于第三本,就是《基于scikit-learn、keras和tensorflow 机器视觉实战(第二版)》,适合进行机器视觉实战和应用,主要是使用轮子即是scikit-learn,而不是造轮子。注意第二版使用tf2.

#07

深度学习

主要是理解一些基础的神经网络及其组成环节(卷积、池化、全连接等),还有例如batch normalization, drop等基础操作,对于搭建网络和使用框架以及构建的常见评价指标的理解和应用。

理论基础推荐(必):吴恩达老师课程

https://www.bilibili.com/video/BV1FT4y1E74V?from=search&seid=12610186660775144635

深入学习(高手进阶):“四大名著”之四,花书。这个写的感觉还是挺晦涩难懂的,大部头的书需要大段时间细细品读。

推荐目标检测入门到精通(熟悉,会使用):

来自首尔国立大学的 Lee hoseong 开源了 「deep learning object detection」 GitHub 项目,列举了近些年来深度学习-目标检测重要论文。其他论文可参考下图。

img

项目链接是:

https://github.com/hoya012/deep_learning_object_detection#2014

50片经典论文,需要精读的经典内容:

一阶段检测代表文章:yolov1-v5, ssd

二阶段检测代表文章:faster rcnn, mask rcnn

竞赛常用的结构:cascade rcnn

推荐分类常用模型(熟悉,会使用):

LeNet5, AlexNet, VGG, GoogleLeNet, Inception, ResNet, DenseNet, NasNet ,mobilenet等。

另,keras和pytorch都有自带的这些函数,可以直接调用,很方便。

推荐分割常用模型(熟悉,会使用):

unet, pspnet, deeplab等

推荐关注博主:

https://www.bilibili.com/video/BV1qJ411S7Pn

#08

实战篇

paper导读推荐公共号:我爱机器视觉

业内动向公共号:量子位

AI竞赛和学习公共号:Datawhale

部署和应用公共号:GiantPandaCV, Jack Cui等

主要能够提高个人实践能力途径,如下所示:

(1)去天池,kaggle,华为等打比赛

(2)读论文,复现论文

(3)github上找高star项目实操和改进

(4)工作、实习或者找实验室

(5)yotube上找热评AIOT项目,例如jetson nano相关的,积累落地经验或者做成实用专利

#09

后续学习和发展

我的目标检测后续的计划总纲 :

基础知识+经典paper熟悉、

模型架构和源码、

数据处理、

模型优化、

应用部署、

AIOT、

竞赛成长

在一个主航道上学有所成,日积月累达到一定深度,然后在扩展自己的宽度。

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

<think>好的,我现在需要帮一个程序员朋友规划转行AI行业的学习路径。首先,我得理清楚AI开发需要哪些核心技能,然后根据他的背景推荐合适的学习步骤和资源。 程序员已经有编程基础,这应该是优势。但AI涉及的领域比较广,可能需要补充数学知识,比如线性代数、概率统计和微积分。不过,具体需要掌握到什么程度呢?可能得先了解常用的数学概念,比如矩阵运算、梯度下降、概率分布这些,而不是深入理论证明。 接下来是编程方面。Python在AI领域用得最多,尤其是数据处理和模型训练。虽然他可能熟悉其他语言,但Python的库像NumPy、Pandas、Matplotlib是必须的。然后是机器学习框架,比如TensorFlow和PyTorch,这两个应该重点学习。还有数据处理工具,比如SQL,可能也需要补充。 然后是机器学习的基础知识。监督学习、无监督学习、强化学习这些概念,常见的算法如线性回归、决策树、SVM、神经网络。需要理解原理和应用场景。项目实践很重要,可以通过Kaggle竞赛或者开源项目来练习。 深度学习AI的重要部分,得学习神经网络的结构,CNN、RNN、Transformer这些模型。可能还要了解自然语言处理或计算机视觉的具体应用,比如BERT、ResNet。框架方面,PyTorch现在比较流行,应该深入学习。 工程化能力也不能忽视。模型训练好后如何部署,比如使用Flask或FastAPI搭建API,Docker容器化,云计算平台如AWS、Azure的使用。模型优化方面,剪枝、量化这些技术,以及分布式训练的知识。 行业应用方面,不同领域有不同的需求,比如推荐系统、图像识别、NLP。他需要明确方向,学习相关的技术和业务逻辑。同时,了解伦理问题,比如数据隐私和算法偏见,也是必要的。 最后,保持学习的态度,跟进最新的论文和技术动态,参与社区和项目积累经验。可能需要推荐一些书籍和在线课程,比如《机器学习实战》、Andrew Ng的课程,或者Hugging Face的教程。 总结一下,学习路径大概分为数学基础、编程工具、机器学习理论、深度学习、工程化部署、行业应用几个阶段。根据他的情况调整深度和顺序,重点放在实践和项目上,逐步过渡到AI开发岗位。</think>以下是针对程序员转行AI开发的系统性学习路径(分阶段递进,带关键工具/概念标注): --- ### **一、夯实数理基础(选择性补足,聚焦应用层)** 1. **线性代数** - 核心:矩阵运算($Ax = b$)、特征值分解(PCA基础)、张量概念($T_{ijk}$) - 工具:NumPy实现矩阵操作(`np.linalg.svd`) 2. **概率统计** - 核心:贝叶斯定理($P(A|B) = \frac{P(B|A)P(A)}{P(B)}$)、高斯分布、假设检验 - 应用:评估模型指标(准确率/召回率计算公式:$\text{Precision} = \frac{TP}{TP+FP}$) 3. **微积分** - 核心:梯度概念($\nabla f$)、链式法则(反向传播基础)、最优化(损失函数曲面) --- ### **二、掌握AI开发工具链** 1. **Python生态** - 数据处理:Pandas(DataFrame操作)、NumPy(广播机制) - 可视化:Matplotlib(`plt.subplots`)、Seaborn(分布图) - 范例:用Scikit-learn快速实现分类(`from sklearn.ensemble import RandomForestClassifier`) 2. **深度学习框架** - PyTorch:动态计算图(`torch.autograd`)、模型定义(`nn.Module`) - TensorFlow:静态图(`@tf.function`)、Keras高层API(`model.fit()`) 3. **数据处理工程化** - 大数据:PySpark(RDD操作)、Dask(并行DataFrame) - 数据库:SQL查询优化(窗口函数`OVER(PARTITION BY...)`) --- ### **三、机器学习核心知识体系** ```mermaid graph LR A[机器学习方法论] --> B[监督学习] A --> C[无监督学习] A --> D[强化学习] B --> E[回归问题: 房价预测] B --> F[分类问题: 图像识别] C --> G[聚类: 用户分群] C --> H[降维: t-SNE可视化] D --> I[Q-Learning] D --> J[PPO算法] ``` 1. **经典算法实现** - 手写梯度下降(代码示例): ```python def gradient_descent(X, y, lr=0.01, epochs=100): theta = np.zeros(X.shape[1]) for _ in range(epochs): grad = X.T @ (X @ theta - y) / len(y) theta -= lr * grad return theta ``` 2. **模型评估** - 交叉验证(`sklearn.model_selection.KFold`) - ROC曲线绘制(`sklearn.metrics.roc_curve`) --- ### **四、深度学习专项突破** 1. **CV方向技术栈** - 核心架构:ResNet残差连接(解决梯度消失) - 实践:使用MMDetection训练目标检测模型(配置文件`configs/faster_rcnn_r50_fpn.py`) 2. **NLP方向技术栈** - Transformer详解:自注意力机制($\text{Attention}(Q,K,V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$) - 实战:Hugging Face库调用BERT(`AutoModelForSequenceClassification`) 3. **模型压缩部署** - ONNX格式导出:`torch.onnx.export(model, input, "model.onnx")` - TensorRT优化:FP16量化(`builder.fp16_mode = True`) --- ### **五、工程化落地能力** 1. **MLOps全流程** - 持续集成:GitHub Actions自动化测试 - 模型监控:Prometheus + Grafana指标看板 2. **云平台实战** - AWS SageMaker全流程示例: ```python from sagemaker.pytorch import PyTorch estimator = PyTorch(entry_point='train.py', role=sagemaker.get_execution_role(), framework_version='1.8.0', instance_count=2, instance_type='ml.p3.8xlarge') estimator.fit({'training': inputs}) ``` --- ### **六、持续进阶策略** 1. **论文复现** - 使用Papers With Code查找实现(如Vision Transformer复现) - 参与AI竞赛(Kaggle特征工程技巧积累) 2. **社区参与** - 贡献开源项目(PyTorch Lightning模块开发) - 技术博客撰写(Medium/知乎分享模型优化心得) --- **转行建议**:优先从AI工程岗切入(模型部署优化),逐步向算法岗过渡。初期可关注以下岗位: - AI平台开发工程师 - 机器学习系统工程师 - 计算机视觉部署工程师 当前行业对具备传统开发经验+AI工程化能力的复合型人才需求旺盛,平均薪资溢价可达30%-50%。保持代码能力优势的同时深化AI专项技能,是成功转型的关键路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值