公司数据不泄露,DeepSeek R1本地化部署+web端访问+个人知识库搭建与使用,喂饭级实操教程,老旧笔记本竟跑出企业级AI

1 Ollama PC本地化部署

1.1 下载Ollama

https://ollama.com/

目前Ollama支持macOS、Linux、Windows,选择相应的系统,macOS和Windows直接下载,Linux系统需要执行下面命令:

curl -fsSL https://ollama.com/install.sh | sh

img

选择Windows本地下载,直接安装即可。

1.2 选择模型

点击Models,第一条就是deepseek-r1模型。或者搜索框输入模型名称进行搜索。

img

点击进去后,查看各个模型,不同模型执行的命令不同,最后部分看你选择的参数模型。

7b命令:ollama run deepseek-r1:7b

1.5b命令:ollama run deepseek-r1:1.5b

DeepSeek R1提供多个版本,参数量越大,模型通常越强大,但也需要更多的计算资源。

比如1.5B代表有15亿个参数。

具体选择哪一个看你硬件设备了。

img

1.3 运行命令

荣姐用的电脑配置不高,选了1.5b。如果你配置高,可以选择更大的,毕竟越大效果越好。

img

1.4 效果测试

当界面出现success显示安装成功。

输入你是谁,看到deepseek的回答。

img

2 DeepSeek+Chatbox网页端

本地命令行使用还是不太直观,可以选择Chatbox进行网页端访问,提高可交互性。

Chatbox AI 是一款 AI 客户端应用和智能助手,支持众多先进的 AI 模型和 API,可在 Windows、MacOS、Android、iOS、Linux 和网页版上使用。

本地使用Ollama部署完成后,可以使用Chatbox进行调用。

根据官方文档给出的步骤进行配置

https://chatboxai.app/zh/help-center/connect-chatbox-remote-ollama-service-guide

img

2.1 环境变量配置

默认情况下,Ollama 服务仅在本地运行,不对外提供服务。

要使 Ollama 服务能够对外提供服务,你需要设置以下两个环境变量:

OLLAMA_HOST:0.0.0.0

OLLAMA_ORIGINS:*

在 Windows 上,Ollama 会继承你的用户和系统环境变量。

1、通过任务栏退出 Ollama。

2、打开设置(Windows 11)或控制面板(Windows 10),并搜索“环境变量”。

3、点击编辑你账户的环境变量。

4、为你的用户账户编辑或创建新的变量 OLLAMA_HOST,值为 0.0.0.0; 为你的用户账户编辑或创建新的变量 OLLAMA_ORIGINS,值为 *。

img

img

5、点击确定/应用以保存设置。

img

6、从 Windows 开始菜单启动 Ollama 应用程序。

2.2 chatbox设置

1、打开官网:https://chatboxai.app/zh,选择启动网页版。

img

2、选择本地模型,如果找不到,点击左侧的设置按钮。

img

3、选择Ollama API。

img

4、选择模型,本地运行Ollama后会自动出现模型的选项,直接选择即可。

img

5、点击DISPLAY,选择简体中文,点击保存按钮。

img

6、在聊天窗口输入问题进行测试。

img

2.3 搭配GPTs使用

1、点击左侧我的搭档

img

2、选择一个你喜欢的应用,本示例选择夸夸机2.0

img

3、随便输入一个场景,看看大模型的回答。比如自嘲、尴尬、夸张的场景,看看他怎么花样夸你。

img

实操演示视频:

荣姐聊AI

,赞22

3 DeepSeek知识库搭建

我们还可以通过浏览器插件来访问本地部署的大模型,这个插件还支持本地知识库搭建。

1、安装插件Page Assist,搜索插件后添加至Chrome

img

2、选择本地搭建的模型,点击配置按钮,设置中文

img

3、RAG设置,模型选择本地搭建的。

img

4、点击左侧管理知识,可以添加本地知识库。

填写知识标题及上传文件,点击提交按钮。

img

状态为已完成就可以使用了。

img

新建聊天进行测试,在聊天窗口要记得点击右下角知识,选择刚才搭建的知识库名称,然后在上方看到就可以了。

对模型进行测试,看看是否可以根据知识库进行回答。

我问了一下知识库中的《量子纠缠通信:未来通信的革命》 价格是多少?

img

思考完成后,模型给出了最终答案,价格是299元。

img

荣姐上传知识库内容:为了测试方便,我只输入了5本虚构的书名和价格。

书名及价格: 1. 《量子纠缠通信:未来通信的革命》 - 价格:¥299 2. 《时间折叠理论:时间旅行的科学》 - 价格:¥349 3. 《暗物质能源:宇宙的未知宝藏》 - 价格:¥399 4. 《心灵感应网络:思维的直接交流》 - 价格:¥299 5. 《生物计算机:生物技术与计算的融合》 - 价格:¥499

跟着我的操作步骤,就可以在本地成功搭建自己的私有知识库了!

如何学习大模型技术,享受AI红利?

面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,详尽的全套学习资料,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。

无论是初学者,还是希望在某一细分领域深入发展的资深开发者,这样的学习路线图都能够起到事半功倍的效果。它不仅能够节省大量时间,避免无效学习,更能帮助开发者建立系统的知识体系,为职业生涯的长远发展奠定坚实的基础。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

read-normal-img

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

AI大模型时代的转行选择,新风口能否抵御35岁中年危机?_语言模型_02

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

AI大模型时代的转行选择,新风口能否抵御35岁中年危机?_语言模型_03

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

AI大模型时代的转行选择,新风口能否抵御35岁中年危机?_ai_04

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

AI大模型时代的转行选择,新风口能否抵御35岁中年危机?_ai_05

结语

大模型作为新时代的风口,确实为那些希望转行或寻求职业突破的人提供了广阔的舞台。然而,是否选择进入这一领域还需综合考虑自身的兴趣、特长以及长远规划。通过构建基础知识体系、参与实际项目、拓展软技能、关注跨学科融合以及建立广泛的社交网络,你可以在这个充满机遇的新领域中迅速站稳脚跟。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### Linux环境下DeepSeek R1本地化部署 对于Linux环境下的DeepSeek R1本地化部署,过程涉及多个方面,包括但限于获取必要的软件包、配置运行环境以及确保服务能够稳定启动并可通过Web访问。 #### 获取安装资源 为了开始部署流程,需前往官方指定网站`ollama.com`下载适用于Linux系统的DeepSeek R1版本安装包[^3]。这一步骤至关重要,因为只有正确的安装包才能保障后续操作顺利进行。 #### 安装依赖项 在执行具体安装之前,建议确认目标机器已安装所有必需的依赖库和服务组件。通常情况下,这些可能包括Docker及其相关工具链,用于支持容器化的应用程序部署模式。可以通过命令行工具如APT或YUM来完成这一准备工作: ```bash sudo apt-get update && sudo apt-get install docker.io -y ``` #### 启动DeepSeek R1实例 一旦准备就绪,可以利用docker-compose或其他类似的自动化脚本来简化启动过程。下面是一个简单的例子,展示了如何创建一个新的Docker容器以运行DeepSeek R1: ```yaml version: '3' services: deepseek-r1: image: "deepseek-r1:latest" ports: - "8080:80" # 将主机上的8080口映射到容器内的80口 volumes: - ./data:/app/data # 挂载数据卷以便持久保存应用状态 ``` 上述配置文件定义了一个名为`deepseek-r1`的服务,并指定了其使用的镜像名称、开放给外部网络连接监听的TCP口号以及挂载的数据目录路径。需要注意的是,实际使用时应根据实际情况调整参数设置。 #### Web界面访问 成功启动后,默认情况下应该可以在浏览器地址栏输入类似于`http://localhost:8080/`这样的URL来查看和管理DeepSeek R1的应用程序前页面。如果遇到任何关于权限控制或者防火墙阻止的问题,则需要进一步排查服务器的安全策略设定。 #### 构建个人知识库 针对构建个性化知识管理系统的需求,在完成了基础平台建设之后还需要额外考虑几个因素:一是选择合适的数据库引擎作为底层存储结构;二是设计合理的API接口供其他业务逻辑调用查询;三是实现有效的索引机制提高检索效率。这部分工作往往涉及到较为复杂的编程技巧和技术选型决策,因此强烈推荐参考官方文档或是寻求专业人士的帮助来进行实施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值