# LLM高效微调详解-从Adpter、PrefixTuning到LoRA

一、背景

图片

目前NLP主流范式是在大量通用数据上进行预训练语言模型训练,然后再针对特定下游任务进行微调,达到领域适应(迁移学习)的目的。

图片Context Learning v.s. SFT

指令微调是预训练语言模型微调的主流范式,其目的是尽量让下游任务的形式尽量接近预训练任务。

从而减少下游任务和预训练任务之间的Gap, 实现预训练语言模型适应下游任务,而非下游任务去适应模型

图片

指令微调的效果要优于基于Zero/Few-shot的提示词工程的上下文学习。

但随着预训练语言模型进入LLM时代,其参数量愈发庞大。全量微调模型所有参数所需的显存早已水涨船高。

例如:

全参微调Qwen1.5-7B-Chat预估要2张80GB的A800,160GB显存 全参微调Qwen1.5-72B-Chat预估要20张80GB的A800,至少1600GB显存

而且,通常不同的下游任务还需要LLM的全量参数,对于算法服务部署来说简直是个灾难(当然,一种折衷做法就是全量微调后把增量参数进行SVD分解保存,推理时再合并参数 )。

图片

为了寻求一个不更新全部参数的廉价微调方案,之前一些预训练语言模型的高效微调(Parameter Efficient, PEFT)工作,要么插入一些参数或学习外部模块来适应新的下游任务。

图片

接下来将介绍如下4个PEFT方法(重点是主流的LoRA):

  • Adatper Tuning
  • Prompt Tuning
  • Prefix Tuning
  • LoRA

图片

二、参数高效微调

2.1 Adapter Tuning

Adapter Tuning试图在Transformer Layer的Self-Attetion+FFN之后插入一个先降维再升维的MLP(以及一层残差和Laye

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值