微调llama 3 — PEFT微调和全量微调

1. llama 3 微调基础

1.1 llama 3 简介

官方blog
llama 3 目前有两个版本:8B版和70B版。8B版本拥有8.03B参数,其尺寸较小,可以在消费者硬件上本地运行。

Llama 3与Llama 2具有相同的架构,但词汇表要大得多,包含128k entries,而Llama 2只有32k
entries,根据Meta的说法,词汇表的扩展显著提高了模型表现。Llama 3的预训练数据包含5%的高质量非英语数据。注意:Meta在model
card中仍然提到Llama 3更适合用于英语任务。

另一方面,词汇表的扩展意味着token embeddings需要更多的数据才能被训练的更准确。Meta在15T tokens上训练Llama
3。相比之下,Llama 2只在2T tokens上训练,Google Gemma在6T tokens训练,这在当时似乎已经很多了。

模型的性能表现如下图所示:
在这里插入图片描述

1.2 llama 3 8b Fully Fine-tuning内存占用分析

Fully Fine-tuning an LLM需要更新其所有参数,这种微调需要大量的内存。

  • 模型需要被完全加载到 GPU 内存中
  • 此外,通常用于微调 LLMs 的优化器 AdamW 会为模型中的每个参数创建并存储 2 个参数在 GPU 内存中
  • 并且我们还需要存储在微调过程中创建的张量,即激活值,以便在反向传播过程中用于更新模型参数的梯度。

对Llama 3 8B进行微调,例如,批量大小为8,序列长度为512,将消耗128.87GB的显存
。注意:这个内存消耗是一个估计值,没有考虑任何的优化,比如梯度检查点和张量并行。

modelloading the modeloptimizer statesactivationstotal
llama 3 8b14.96GB59.83GB54.08GB128.87GB

估算大型语言模型(LLM)内存消耗的计算方法

幸运的是,我们可以很容易地减少这三种参数的内存消耗:

  • Optimizer states :默认情况下,AdamW 的参数为 float32,每项占用 4 字节。AdamW-8bit 是另一种不错的选择,它将参数量化为 8 位,即减少了内存消耗从 59.8 GB 到 15 GB。如果使用的框架不复制模型参数,内存消耗会大大减少。
  • Model :我们可以将模型量化为4位。它将内存消耗分成近4份,即从15 GB到4 GB。在实践中,为了保持其性能,并不是所有的LLM模块都会被量化。
  • Activations :我们需要存储激活来计算梯度。然而,使用gradient checkpointing,我们可以在反向传播过程中动态地重新计算激活值,而不是在整个训练过程中都存储这些激活值。它大大减少了激活的内存消耗,从54GB减少到10 GB。

在应用了所有这些优化措施之后,微调过程需要29GB的内存。虽然这仍然太多,但至少现在可以使用两个24GB的GPU来对模型进行微调了。

1.3 llama 3 8b PEFT Fine-tuning内存占用分析

使用PEFT方法,如LoRA,我们可以在模型顶部微调一个适配器,不需要完全重新训练模型。为了进一步降低内存消耗。

1. 使用LoRA,需要一个带有24 GB RAM的GPU来微调Llama 3;
2. 使用QLoRA,只需要一个带有16 GB RAM的GPU。

2. PEFT方法微调llama 3

1、QLoRA 是量化的 LoRA 与 LLMs 的结合。要使用这种方法对 Llama 3 8B 进行微调,我们需要安装

pip install --upgrade bitsandbytes transformers peft accelerate datasets trl

2、然后导入需要的pkgs

import torch, os
from datasets import load_dataset
from peft import LoraConfig, prepare_model_for_kbit_training
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    TrainingArguments,
)
from trl import SFTTrainer

3、如果你拥有较新的GPU,就可以使用bfloat16数据类型以获得更好的训练稳定性,并使用FlashAttention来减少处理长序列时的内存消耗。下面的代码会自动检测GPU是否兼容bfloat16FlashAttention

#use bf16 and FlashAttention if supported
if torch.cuda.is_bf16_supported():
  os.system('pip install flash_attn')
  compute_dtype = torch.bfloat16
  attn_implementation = 'flash_attention_2'
else:
  compute_dtype = torch.float16
  attn_implementation = 'sdpa'

4、然后,我们需要初始化并配置Tokenizer。通常,LLMs在预训练时不包含pad_token。然而,在微调过程中,由于我们的训练示例长度不相同,我们需要将其填充到batch中。我们可以创建并添加一个pad_token到词汇表中,但更简单的选择是将eos_token指定为pad_token。

model_name = "meta-llama/Meta-Llama-3-8B"
#Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, add_eos_token=True, use_fast=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id =  tokenizer.eos_token_id
tokenizer.padding_side = 'left'

注意,我们使用的是左边填充。如果想使用flash_attention,右填充是不兼容的。

5、至于微调数据集,可以选择了 timdettmers/openassistant-guanaco,因为这个数据集足够小。

6、然后,我们创建bnb_config并加载模型:

bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=compute_dtype,
        bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
          model_name, quantization_config=bnb_config, device_map={"": 0}, attn_implementation=attn_implementation
)

7、bnb_config定义了在4位精度下加载模型,并对量化常数进行量化(即双重量化)。在前向传递过程中,如果你的GPU支持bfloat16数据类型,则将创建bfloat16张量。请注意:如果你的GPU不支持bfloat16,则笔记本将使用float16。然而,这可能会导致训练不稳定。如果你发现训练损失降至0或NaN,请将compute_dtype更改为torch.float32。

8、为了减少激活的内存消耗,我们还需要启用梯度检查点,这是通过

model = prepare_model_for_kbit_training(model)

9、对于 LoRA 的配置,可以使用:

peft_config = LoraConfig(
        lora_alpha=16,
        lora_dropout=0.05,
        r=16,
        bias="none",
        task_type="CAUSAL_LM",
        target_modules= ['k_proj', 'q_proj', 'v_proj', 'o_proj', "gate_proj", "down_proj", "up_proj"]
)

可以增加rank来获得更好的结果。增加rank也会增加内存消耗,因为rank增大,适配器的参数也会增加。

10、接下来,定义训练参数和超参数:

training_arguments = TrainingArguments(
        output_dir="./Llama3_8b_QLoRA",
        evaluation_strategy="steps",
        do_eval=True,
        optim="paged_adamw_8bit",
        per_device_train_batch_size=8,
        gradient_accumulation_steps=4,
        per_device_eval_batch_size=8,
        log_level="debug",
        save_strategy="epoch",
        logging_steps=100,
        learning_rate=1e-4,
        fp16 = not torch.cuda.is_bf16_supported(),
        bf16 = torch.cuda.is_bf16_supported(),
        eval_steps=100,
        num_train_epochs=3,
        warmup_ratio=0.1,
        lr_scheduler_type="linear",
)

11、使用"paged_adamw_8bit",会在需要时将一些优化器状态存储到CPU RAM中,以进一步减少GPU内存消耗。

补充:QLoRA其实是核心就是在LoRA的技术加上深度的量化过程。核心优化思想包括以下三点:

  • 4bit NoramlFloat
    Quantization:一种新的数据类型,只用4字节表征参数并且保证整个模型的精度损失极小.(和我们之前的Int8,int4量化方式不同,
    原理这篇先不展开了)
  • Double Quantization:对第一次量化后的那些常量再进行一次量化,减少存储空间。
  • Paged
    optimizers:使用NVIDIA统一内存功能,该功能在CPU和GPU之间进行自动page对page传输,以便在GPU偶尔OOM的情况下进行。可以从现象上理解成出现训练过程中偶发OOM时能够自动处理,保证训练正常训练下去。

对于批量大小,随机选择了一个批量大小为32(每个设备的批量大小为8,梯度累积步骤为4(8x4=32)的配置)。该配置消耗了16.6
GB的GPU内存。如果你只有16 GB的GPU,请将每个设备的批量大小减少到4。

12、最后,开始微调时,运行以下命令:

trainer = SFTTrainer(
        model=model,
        train_dataset=ds['train'],
        eval_dataset=ds['test'],
        peft_config=peft_config,
        dataset_text_field="text",
        max_seq_length=512,
        tokenizer=tokenizer,
        args=training_arguments,
)

trainer.train()

13、使用Google Colab的L4实例完成这3个epoch大约需要10个小时。

3. 将微调后的adapter集成到Llama 3中

为了避免每次使用时都加载adapter,你可以将其合并到 Llama 3 中。当适配器已经使用 QLoRA
进行微调时,必须小心进行合并,以保持adapter的大部分准确性。我们必须遵循以下步骤:

1. 加载并量化Llama 3
2. Dequantize Llama 3 to the compute dtype used during QLoRA fine-tuning
3. Merge the adapter into the dequantized model
4. Save the resulting model  
   最后得到一个没有量化的模型。我们不能像微调那样用bitsandbytes量化它,否则会严重降低模型的性能。使用AWQ或GPTQ来代替即可。

4. 使用AWQ对llama 3进行4位量化

AWQ是一种量化方案,它保留了模型的重要权重。AWQ很准确,也受到高效的推理核的支持。首先需要安装AutoAWQ:

pip install autoawq

然后,用几行代码执行量化,例如,要量化前一节合并后得到的模型:

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

tokenizer_path = "meta-llama/Meta-Llama-3-8B"
model_path = './dqz_merge/'
quant_path = 'llama-3-oasstguanaco3e-awq-4bit'
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }

# Load model and tokenizer
model = AutoAWQForCausalLM.from_pretrained(model_path, safetensors=True)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, use_fast=True)

# Quantize
model.quantize(tokenizer, quant_config=quant_config)

# Save quantized model with safetensors
model.save_quantized("./"+quant_path, safetensors=True)
tokenizer.save_pretrained("./"+quant_path)

这将把量化模型保存到一个名为“llama-3-oasstguanaco3e-awq-4bit”的目录中。

5. 完全微调模型

QLoRA和LoRA只是微调适配器。如果你真的想微调整个模型,你可以尝试GaLore。GaLore将梯度投影到低秩子空间,以显著减少它们的维数,从而减少它们的内存消耗。虽然GaLore大大降低了优化器状态的内存需求,但你仍然需要48GB的GPU
RAM。

CODE

具体的notebook代码可以在github仓库中拿到。

notebook中包含了4个部分:

1. QLoRA fine-tuning
2. Merging the fine-tuned adapter into the base model
3. Quantization the Llama 3 with AWQ
4. Appendices: LoRA and GaLore fine-tuning

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

  • 30
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在实战操作中,PEFT库可以用来微调BERT模型,以进行文本情感分类任务。首先,我们需要准备一个包含大量文本和标签的数据集,用于训练和验证BERT模型。然后,我们需要利用PEFT库中提供的工具和接口,将数据集转换成BERT模型可接受的格式,并进行数据预处理,如分词和填充等操作。 接着,我们可以利用PEFT库中提供的预训练模型,加载BERT模型的参数和网络结构,并在数据集上进行微调微调的过程中,我们可以通过调整学习率、批大小和训练轮数等超参数,来优化模型的性能。在每个训练轮数结束后,我们可以利用PEFT库中的评估工具对模型进行评估,以了解模型在验证集上的性能表现。 最后,当模型在验证集上的性能达到满意的水平后,我们可以使用PEFT库提供的保存模型工具,将微调后的BERT模型保存下来,以备在实际应用中使用。通过PEFT库的实战操作,我们可以有效地利用BERT模型进行文本情感分类任务,提高模型的准确性和泛化能力,从而更好地满足实际应用的需求。 PEFT库的实战操作不仅帮助我们更好地理解和使用BERT模型,也为我们提供了一套完整的工具和流程,使得模型训练和应用变得更加简单和高效。 PEFT库实战(一): lora微调BERT(文本情感分类) 的操作流程清晰,易于上手,为我们在文本情感分类任务中的应用提供了有力的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值