利用大模型构造数据集,并微调大模型

一、前言

目前大模型的微调方法有很多,而且大多可以在消费级显卡上进行,每个人都可以在自己的电脑上微调自己的大模型。

但是在微调时我们时常面对一个问题,就是数据集问题。网络上有许多开源数据集,但是很多时候我们并不想用这些数据集微调模型,我们更希望使用某本书、某个作者的作品、我们自己的聊天记录、某个角色的对话来微调模型。

用于微调的数据通常是成千上万的问答对,如果手工搜集,需要花费大量时间。

文本将介绍一种方式,利用大模型来构造自己的数据集,并使用我们构造的数据集来微调大模型。
在这里插入图片描述

二、构造数据集

2.1 目的

数据集通常是问答对形式,比如alpaca数据集的形式如下:

  {
    "instruction": "保持健康的三个提示。",
    "input": "",
    "output": "以下是保持健康的三个提示:\n\n1. 保持身体活动。每天做适当的身体运动,如散步、跑步或游泳,能促进心血管健康,增强肌肉力量,并有助于减少体重。\n\n2. 均衡饮食。每天食用新鲜的蔬菜、水果、全谷物和脂肪含量低的蛋白质食物,避免高糖、高脂肪和加工食品,以保持健康的饮食习惯。\n\n3. 睡眠充足。睡眠对人体健康至关重要,成年人每天应保证 7-8 小时的睡眠。良好的睡眠有助于减轻压力,促进身体恢复,并提高注意力和记忆力。"
  }


但是实际上我们能拿到的数据通常是一大段文本的形式,比如:

    小时候,那时我还只有6岁,看到一本描写原始森林壮观景象的书,名叫真实的故事。书里有一幅很精彩的插画,画的是一条大蟒蛇正在吞食一只动物,下面就是那幅插画的复制品。
    这本书上说:“大蟒蛇把它们的猎物不加咀嚼地整个吞下去,之后,就再也不动了,然后通过长达六个月的睡眠来消化掉这些食物。”
	...


现在我们要做的就是把大段文本形式的数据转换成alpaca的形式。

在以往我们只能通过人工的方式完成,而现在我们可以借助大模型的能力。大致思路就是让大模型根据文本,总结出对话、问答内容。这点可以通过Prompt工程实现。

在使用大型语言模型(LLM)生成训练数据对其进行微调的过程中,可以遵循以下几个关键步骤和最佳实践。这些方法广泛应用于自然语言处理、代码生成以及其他需要模型适应特定任务的场景中。 ### 数据生成 为了生成高质量的训练数据集,通常会采用以下策略: 1. **Prompt Engineering**:设计合理的提示模板,引导模型生成符合预期格式和内容的数据。例如,在生成问答对时,可以使用类似“问题:{问题} 答案:”这样的模板来触发模型输出答案部分。 2. **上下文学习(In-Context Learning)**:通过在提示中提供少量示例,使模型能够基于这些示例生成新的样本。这种方法尤其适用于没有现成训练数据的情况 [^5]。 3. **多样性控制**:为了确保生成的数据具有足够的多样性和覆盖范围,可以通过调整温度参数(temperature)、top-k采样或核采样(nucleus sampling)等技术来控制生成过程中的随机性。 4. **后处理与过滤**:生成的数据往往需要经过清洗和验证,以去除低质量或不相关的样本。这一步骤可能包括语法检查、逻辑一致性验证以及是否符合目标领域的规则等。 ### 微调流程 一旦有了可用于微调训练数据集,接下来就可以按照标准的微调流程来进行操作: 1. **选择基础模型**:根据任务需求选择合适的基础模型。HuggingFace 提供了多种预训练模型,如 BERT、RoBERTa 和 T5 等,且支持自定义架构 [^2]。 2. **准备数据集**:将生成的数据转换为适合模型输入的形式。对于文本分类任务来说,这意味着要将文本映射到对应的标签;而对于序列到序列的任务,则需要准备好源句子和目标句子对 [^3]。 3. **配置训练参数**:设置学习率、批次大小、训练轮数等超参数。同时还需要决定是否采用参数高效微调技术,比如 LoRA(Low-Rank Adaptation),它可以在保持大部分原始权重不变的情况下仅更新一小部分参数 [^4]。 4. **执行微调**:利用 `Trainer` 组件进行模型训练。这个组件简化了训练过程,提供了自动化的梯度下降、损失计算等功能 [^2]。 5. **评估与优化**:使用独立的验证集定期评估模型性能,据此调整训练策略。此外,还可以应用早停法防止过拟合 [^2]。 6. **部署与监控**:完成训练后,将模型部署至生产环境,持续监测其表现。如果发现性能下降,则考虑重新收集数据重复上述步骤。 ### 最佳实践 - 在开始之前明确你的业务目标和技术要求,这样可以帮助你更好地选择合适的模型和服务提供商。 - 对于敏感信息或者隐私数据,请务必采取适当的安全措施,避免泄露风险。 - 保持迭代更新的心态,随着新数据的到来不断改进模型。 - 利用现有的工具库,如 HuggingFace Transformers,它们封装了许多常用功能,可以显著降低开发难度 [^2]。 ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments import datasets # 加载预训练模型及其对应的tokenizer model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # 假设我们有一个名为'dataset'的数据集对象,其中包含'text'字段和'label'字段 def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model=model, args=training_args, train_dataset=small_train_dataset, eval_dataset=small_eval_dataset, ) # 开始训练 trainer.train() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值