菜鸟教程:从0开始离线部署私有大模型

大模型的使用必将包含以下三个阶段:

\1. 直接使用,用于提效

\2. 使用 API 定制应用程序

\3. 离线部署+微调,实现私有数据模型化

第一个阶段已经完成,作为技术者应该关注第二、三阶段。今天我们教大家从0开始离线部署私有大模型,过程十分详细,再菜的鸟都能学的会,记不住的点赞收藏,上机实操下。

1. 环境安装和配置

我们以清华大学开源的 ChatGLM-6B 语言模型为例。ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署。

实验使用的环境如下:

Windows11

13700KF

32G内存

RTX 3090 24G显存

ChatGLM-6B 可在最小 6GB 显存运行。如果没有合适的显卡或者想体验完整版,可以购买云服务商的 A100 GPU 服务器试用。以阿里云为例,最便宜的每小时 38 元左右。

2. 安装 Python

Python 官网下载并安装 Python,记得选上“Add python.exe to PATH”。

图片

3. 安装 CUDA

由于 PyTorch 最新只能支持 11.8 的显卡驱动,不能安装最新版 CUDA。

在 Nvidia 官网 下载 11.8 的 CUDA Toolkit Archive。

图片

图片

4. 安装 PyTorch

在 PyTorch 官网 执行对应版本的安装命令。

图片

图片

5. 安装 git

从 git 官网 下载 git。

图片

6. 部署代码

使用下面git命令Clone 代码:

git clone https://github.com/THUDM

/ChatGLM-6B.git

【安装依赖】cd ChatGLM-6Bpip install -r requirements.txt

图片

【下载模型】

代码在执行时默认自动下载模型。如果没有使用魔法,你需要手动下载模型。在 清华大学云盘 下载模型,假设下载到 D:\chatglm-6b-models

图片

7. 运行代码

启动 Python

图片

图片

ChatGLM-6B 返回了“你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。”。至此,大语言模型的离线部署就实现了。我们可以发挥我们的聪明才智,让它给我们工作了。

【长文本生成】

让 ChatGLM-6B 为我们生成一篇文章。

经过大约10秒钟后,文章生成。

图片

运行结果看起来还是很不错的。

私有模型离线部署是指将机器学习模型部署到私有环境中,以保证数据安全和隐密性。这种部署方式适用于那些需要高度安全保障的行业,如金融、医疗、法律等。私有模型离线部署也具有很多优势,比如:

首先,私有化部署可以提供更好的数据安全性和隐密性,因为数据存储在本地服务器上,不会上传到云端,从而避免了数据泄露和攻击。

其次,私有化部署可以更好地满足企业定制化的需求,因为可以根据企业的特定需求和业务流程来定制开发模型和系统,提高管理效率和准确性。

此外,私有化部署还可以提高系统的可靠性和稳定性,因为本地服务器可以更好地控制环境和配置,减少外部因素对系统的影响。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值