大模型的使用必将包含以下三个阶段:
\1. 直接使用,用于提效
\2. 使用 API 定制应用程序
\3. 离线部署+微调,实现私有数据模型化
第一个阶段已经完成,作为技术者应该关注第二、三阶段。今天我们教大家从0开始离线部署私有大模型,过程十分详细,再菜的鸟都能学的会,记不住的点赞收藏,上机实操下。
1. 环境安装和配置
我们以清华大学开源的 ChatGLM-6B 语言模型为例。ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署。
实验使用的环境如下:
Windows11
13700KF
32G内存
RTX 3090 24G显存
ChatGLM-6B 可在最小 6GB 显存运行。如果没有合适的显卡或者想体验完整版,可以购买云服务商的 A100 GPU 服务器试用。以阿里云为例,最便宜的每小时 38 元左右。
2. 安装 Python
Python 官网下载并安装 Python,记得选上“Add python.exe to PATH”。
3. 安装 CUDA
由于 PyTorch 最新只能支持 11.8 的显卡驱动,不能安装最新版 CUDA。
在 Nvidia 官网 下载 11.8 的 CUDA Toolkit Archive。
4. 安装 PyTorch
在 PyTorch 官网 执行对应版本的安装命令。
5. 安装 git
从 git 官网 下载 git。
6. 部署代码
使用下面git命令Clone 代码:
git clone https://github.com/THUDM
/ChatGLM-6B.git
【安装依赖】cd ChatGLM-6Bpip install -r requirements.txt
【下载模型】
代码在执行时默认自动下载模型。如果没有使用魔法,你需要手动下载模型。在 清华大学云盘 下载模型,假设下载到 D:\chatglm-6b-models
7. 运行代码
启动 Python
ChatGLM-6B 返回了“你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。”。至此,大语言模型的离线部署就实现了。我们可以发挥我们的聪明才智,让它给我们工作了。
【长文本生成】
让 ChatGLM-6B 为我们生成一篇文章。
经过大约10秒钟后,文章生成。
运行结果看起来还是很不错的。
私有模型离线部署是指将机器学习模型部署到私有环境中,以保证数据安全和隐密性。这种部署方式适用于那些需要高度安全保障的行业,如金融、医疗、法律等。私有模型离线部署也具有很多优势,比如:
首先,私有化部署可以提供更好的数据安全性和隐密性,因为数据存储在本地服务器上,不会上传到云端,从而避免了数据泄露和攻击。
其次,私有化部署可以更好地满足企业定制化的需求,因为可以根据企业的特定需求和业务流程来定制开发模型和系统,提高管理效率和准确性。
此外,私有化部署还可以提高系统的可靠性和稳定性,因为本地服务器可以更好地控制环境和配置,减少外部因素对系统的影响。
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。