深入理解 Embedding 和 向量:AI 应用中的核心技术

前言

随着 AI 应用的持续火热,许多并不了解 AI 技术的人可能会被众多专业术语搞得一头雾水。相信大家经常会听到「嵌入(embedding)」和「向量(Vector)」这几个词。那么,这些术语到底是什么意思呢?在与我的产品经理交流时,我发现他对这些概念仍然处于似懂非懂的状态。本文将深入探讨这些概念,帮助大家更好地理解它们在 AI 应用中的重要性。

什么是 Embedding 和 向量?

Embedding

Embedding 是一种将高维数据(如文本、图像等)映射到低维空间的技术。具体来说,embedding 是将文本嵌入到向量空间中,用向量来表示文本的含义。通过这种方式,我们可以将复杂的文本数据转换为固定长度的向量,使其更易于处理和分析。

向量

向量是一种表示有大小和方向的量的工具。如果把向量想象成一支箭头,那箭头的长度代表了大小,箭头的指向就代表了方向。在大模型中,向量的元素表示单词的语法角色、语义特性以及与其他单词的关联程度,因此可以使用多维度的向量来表示不同语境下的文本。我们通过向量嵌入模型(Embedding)将文本创建一个多维的向量数组,将所有维度的数据装在一起。

向量在大模型中的应用

在大模型中,向量的应用非常广泛。以下是一个简单的示例,展示了如何使用向量嵌入模型将文本转换为向量:

const apple = await ollamaEmbeddings.embedQuery('苹果');

// 利用 ollamaEmbeddings - llama3 的向量模型,对 ’苹果‘ 进行向量化。得到一个 4096 的高维向量
(4096) [-0.07958430796861649, 0.6035313010215759, 0.03968646004796028, 
-0.08149561285972595, 0.1804697960615158, -0.4402042031288147, -0.12610526382923126, 
-0.37151840329170227, 0.4065650403499603, -0.6496384739875793, -0.8483172655105591, 
1.2612190246582031, 0.510674774646759, -1.1137826442718506, -0.7686999440193176, 
1.8895138502120972, -0.489030122756958, -0.3428537845611572, 0.05110445246100426, 
0.9295482635498047, -0.2418692708015442, 0.5137919783592224, -0.7852306962013245, 
2.859959125518799, 1.6850849390029907, -0.30744242668151855, -0.5165977478027344, 
0.463218092918396, -0.2514533996582031, 0.7475588321685791, -1.4715372323989868, 
1.1312615871429443, -0.25702232122421265, 0.003858691081404686, 0.18920007348060608, 
1.802188754081726, 0.010296303778886795, -0.509368896484375, 0.5087011456489563, 
-1.0624116659164429, …]

在这个示例中,我们使用了 Ollama 的向量模型对“苹果”进行向量化,得到了一个 4096 维的高维向量。这个向量包含了文本“苹果”的 语义信息,使得我们可以在向量空间中进行各种操作,如相似度计算、聚类分析等。

相似度计算

当我们获得一个文本的向量数据时,它能被用来做什么呢?

相似度计算是向量在实际应用中的一个重要方面。我们可以使用一个叫做“余弦相似度”的算法来比较两个向量,发现它们两个的向量比较相似。以下是一个示例,展示了如何使用余弦相似度计算不同文本之间的相似度:

// 利用 阿里通义的向量模型 进行向量化
export const run = async () => {
  const apple = await tongyiEmbeddings.embedQuery('苹果');
  const pear = await tongyiEmbeddings.embedQuery('梨子');
  const computer = await tongyiEmbeddings.embedQuery('电脑');
  const rice = await tongyiEmbeddings.embedQuery('大米');

  const appleAndPear = cosineSimilarity(apple, pear);
  const appleAndComputer = cosineSimilarity(apple, computer);
  const pearAndComputer = cosineSimilarity(pear, computer);
  const pearAndRice = cosineSimilarity(pear, rice);

  console.log('苹果和梨子的余弦相似度', appleAndPear);
  console.log('苹果和电脑的余弦相似度', appleAndComputer);
  console.log('梨子和电脑的余弦相似度', pearAndComputer);
  console.log('梨子和大米的余弦相似度', pearAndRice);
};

run();
/**
 * 苹果和梨子的余弦相似度 0.5542435314938957
 * 苹果和电脑的余弦相似度 0.6076870305288236
 * 梨子和电脑的余弦相似度 0.2819349656432386
 * 梨子和大米的余弦相似度 0.4218836435690608
 */

在这个示例中,我们使用了阿里通义的向量模型对不同的文本进行向量化,然后计算它们之间的余弦相似度。结果显示了不同文本之间的相似度。可以很直观地看到,苹果和梨子的余弦相似度较高,这很好理解,因为苹果和梨子都属于水果,词性和语义上有较高的相似性。那么,为什么苹果和电脑的相似度会大于梨子和电脑的相似度呢?这是因为“苹果”不仅指水果,还常常出现在“苹果电脑”这样的组合中,因此在语料库中“苹果”和“电脑”共同出现的频率较高,从而导致它们的向量相似度更大。

余弦相似度的计算原理

在继续深入之前,我们先来了解一下余弦相似度的计算原理。余弦相似度是通过计算两个向量之间的夹角余弦值来衡量它们的相似度。其公式如下:

公式中的 a·b 表示向量的点积,(|a|) 和 (|b|) 分别表示向量的模(即向量的长度)。余弦相似度的值介于 -1 和 1 之间,值越接近 1 表示两个向量越相似,值越接近 -1 表示两个向量越不相似。

其实,不必过于纠结公式的具体含义,就像高中时背诵公式一样,只要在实际应用中知道如何正确套用即可

  y
  |
  |        b
  |       /
  |      /
  |     /
  |    /
  |   /
  |  /
  | / 
  |/________ x
  a

a 和 b 的夹角越小,它们越相似

用 typescript 实现余弦相似度算法

// 使用 余弦相似度 来对比两个向量
export const cosineSimilarity = (a: number[], b: number[]) => {

  let sum = 0;
  for (let i = 0; i < a.length; i++) {
    sum += a[i] * b[i];
  }

  return (
    sum /
    Math.sqrt(a.reduce((sum, x) => sum + x ** 2, 0)) /
    Math.sqrt(b.reduce((sum, x) => sum + x ** 2, 0))
  );
};

实际应用场景

文本分类

在文本分类任务中,我们可以使用向量嵌入技术将文本转换为向量,然后使用余弦相似度等算法进行分类。例如,我们可以将新闻文章嵌入到向量空间中,然后根据其与不同类别的中心向量的相似度来确定其类别。

信息检索

在信息检索系统中,向量嵌入和相似度计算也有广泛的应用。我们可以将用户的查询和文档库中的文档都嵌入到向量空间中,然后通过计算查询向量与文档向量之间的相似度来排序和检索最相关的文档。

推荐系统

推荐系统可以利用向量嵌入技术将用户和物品嵌入到同一个向量空间中,然后通过计算用户向量与物品向量之间的相似度来生成推荐。例如,电影推荐系统可以将用户的观影历史和电影的特征嵌入到向量空间中,然后推荐与用户向量最相似的电影。

实践中的注意事项

向量嵌入模型的选择

不同的向量嵌入模型在性能和效果上可能有很大的差异。例如,llama3 模型和阿里通义的向量模型在不同任务上的表现可能会有所不同。因此,在实际应用中,选择合适的向量嵌入模型非常重要。

// 我们如果用 OllamaEmbeddings - llama3 来实现上面的 Demo

苹果和梨子的余弦相似度 0.14414769744983516
苹果和电脑的余弦相似度 0.9932239256381733
梨子和电脑的余弦相似度 0.14694302240561782
梨子和大米的余弦相似度 0.8811809317050882

结果相差较大的原因在于 llama3 的 中文训练数据较少,因此与实际情况存在 较大差异

维度选择

向量的维度也是一个需要注意的因素。高维向量可以捕捉更多的语义信息,但也会增加计算复杂度存储成本。在实际应用中,需要根据具体任务的需求选择合适的向量维度。

相似度算法

除了余弦相似度,还有其他相似度算法可以选择,如欧氏距离、曼哈顿距离等。不同的相似度算法在不同的应用场景中可能会有不同的效果,因此在实际应用中可以根据具体需求选择合适的相似度算法。

总结

本文旨在抛砖引玉,带大家入门。欢迎在评论区讨论交流!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
  • 8
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值