万字长文:大语言模型或将重塑现代金融市场工作者的工作方式

图片

各位看官老爷,最近追踪上周LPR非对称下调以后,没有更新新的内容,主要是想憋个大招,最近半年也一直在研究比较有趣的新东西,今天就给各位看官老爷汇报一下最近的工作,文章有点长,各位看官老爷慢慢品

如果需要相关Prompt工程,可以通过文章后台联系,谢谢各位看管老爷的支持

大语言模型或将重塑现代金融市场工作者的工作方式

一、引言

近期,OpenAI发布Sora 文生视频大模型,再次引爆了资本市场对于生成式AI及大语言模型的讨论;在过去的几年里,人工智能技术的突飞猛进不仅重塑了我们的日常生活,也深刻影响了工作方式,尤其是在银行金融市场这一高度专业化和信息密集型的领域。其中,大语言模型,如OpenAI的GPT系列、克劳德Claude、微软的Copliot系列、谷歌的BERT、Gemini和百度的ERNIE,已经成为推动这一变革的前沿力量。这些模型凭借其强大的自然语言处理能力,不仅能够理解、生成、翻译文本,还能完成复杂的分析和预测任务,从而为金融市场工作者提供了前所未有的工具和机遇。

随着大语言模型在金融领域的应用日益广泛,大语言模型开始重塑金融市场工作者的工作习惯。无论是在数据分析、市场预测、风险评估还是客户管理等方面,这些模型都展现出了极大的潜力和价值。通过自动化处理大量数据和信息,它们不仅显著提高了工作效率,还帮助工作者获得更深入的洞察,做出更为精准的决策。

然而,随着这些技术的广泛应用,如何有效地构建和精确使用Prompt指令成为了金融市场工作者面临的一个新挑战。正确构建Prompt不仅可以最大化大语言模型的效用,还能确保得到准确和可靠的输出结果。此外,对于任何技术的应用而言,风险管理都是不可或缺的一环。在享受大语言模型带来的便利的同时,我们也必须对大语言模型应用潜在的风险保持警觉,包括数据隐私、模型偏见以及结果的不确定性等问题。

本文旨在探讨大语言模型如何重塑现代金融市场工作者的工作习惯,通过分析国内外主流的大语言模型、它们在业务实操中的应用案例,以及如何构建有效的Prompt指令和注意使用中的风险,提供一个全面的视角来理解这一技术变革。在这个快速变化的时代,了解和掌握这些先进技术,不仅能够帮助金融工作者提升工作效率和质量,更是适应未来市场变化的关键。

二、主流大语言模型介绍

大语言模型(LLM:Large language model,下文称“LLM”)是基于深度学习技术来理解、处理并生成人类自然语言的的人工智能系统。是当今人工智能领域的一大重大突破性技术,基于大量的密集的文本数据的训练,通过自我监督和半监督学习的方式,从文本文档中训练学习相关的统计关系以达到对人类自然语言的理解与生成。

技术原理上,大语言模型主要基于Transformer架构,该架构是2017年由谷歌在 NeurIPS 会议上首次提出;是专为处理序列数据设计的神经网络架构,其核心是自注意力(self-attention)机制。自注意力机制能够让模型在处理某个词汇时,考虑到输入序列中的所有词汇,通过分配不同的注意力权重给输入序列中的不同部分,从而更准确地捕捉词汇之间的关系和语言上下文。

图片

(图1:Transformer的技术理论框架)

在训练过程中,基于转换器架构的大型语言模型(LLM),通过其编码器(decoding)部分将文本转换成数值形式,进而能够捕获词语和短语的相似含义、上下文关系以及词性等语言特征。接下来,LLM将通过解码器利用这些获得的语言知识,根据自身的参数产生独特的文本输出。具体流程来看,大型语言模型的操作流程分为接受输入文本、编码文本以及解码生成、输出预测这几个步骤。在LLM能够开始接收输入并产生预测输出之前,它需要经过一段预训练期,此期间LLM会学习执行基本的语言功能,之后还需要经过特定约束的微调阶段。

图片

(图2:Transformer下的Multiple Attention Heads框架)

在预训练阶段,LLM通常会用维基百科、GitHub其他在线文本资源中的海量数据集进行训练。训练数据集数据集包括数万亿的词汇,其内容的质量直接关系到语言模型的表现。在此阶段,LLM主要通过无监督学习处理数据集,即在没有明确任务指示的情况下学习文本数据。通过这一过程,LLM的AI算法能够理解单词的含义及其之间的联系,并根据上下文来辨识词汇的不同意义。例如,模型将能辨别“right”一词是指“正确”,还是指方向上的“右”。

为了使LLM能够执行如输出等特定任务,就必须对其进行针对性的微调,以提升在特定任务上的表现,这依赖于对LLM进行Prompt提示词的构建。提示调优与微调有着相似之处,旨在通过少量样本提示或零样本提示训练模型完成特定任务。提示是指的对LLM的直接指示。少量样本提示通过提供具体例子来指导模型预测输出。例如,在情绪分析任务中,可以提供正负情绪的示例来训练模型。而零样本提示则不提供具体例子来教导模型如何响应输入。它通过直接提问的方式指明模型需要完成的任务,但不给出具体的解决方案示例。实操过程中,增加对LLM模型的提示词的Tokens的输入,有利于提升模型的预测和输出精度,但由于Attention机制的存在,对于Prompt提示词的输入也依赖于有监督的赋予提示词“软”、“硬”权重。在此,将不再过多讨论LLM的技术原理,有且仅对笔者了解的大语言模型的运作机制进行了简单的介绍。

大语言模型自上世纪80年代,计算机科学家尝试采用神经网络处理人类的自然语言,发展至2023年,OpenAI推出“GPT-4”模型。经过近40年发展,版本不断迭代,行业,已呈现百花齐放的态势。主流的大语言模型包括PaLM、BERT、XLNet、GPT等。同时,经过微调与实际应用场景结合的可落地的应用模型也纷繁众多,如:Microsoft的Copliot模型,Salesforce专为CRM开发的 Einstein模型,Bloomberg开发的BloombergGPT等。国内方面,各大厂商亦是不遑多让,有百度的“文心一言”、阿里巴巴的“通义千问”、科大讯飞的“星火大模型”等、东方财富的“妙想”模型等。

图片

(图3:主流开源大语言模型)

现阶段,最为强大的大语言模型,如2024年2月谷歌发布的Gemini1.5,已经实现100万个Tokens的输入,并测试成功了1,000万窗口文本的输入;另外,如Anthropic的Claude克劳德2.1模型,也已经实现20万个Tokens的输入,如常用的,GPT-4模型也可最大支持4,096个Tokens的输入。

从发展趋势上看,单模态大语言模型(主要是训练文本的输入输出)目前已完成向多模态大模型1(实现视觉、音频、文本等模态编码器)转换的新一轮革命,预计在未来10年,将真正推动人工智能向通用型人工智能发展。

图片

(图4:多模态大模型的发展方向)

大语言模型(LLM)的问世,为复杂的自然语言处理工程(NLP)提供了支持,不仅标志着机器对人类语言理解能力的一个重大飞跃,也从文本识别、语音识别、图像生成、自然语言认知与理解、视频分析、文本翻译、知识图谱构建等领域为众多行业构建了多元化的应用场景;以其强大的泛化能力,将进一步实现业务效率提质,应用技术技术创新的双重良性循环,更为在金融市场业务工作中的领先应用创造了更多新的可能性。

图片

(图5:多模态的模型的应用实景案例)

三、大语言模型(LLM)在金融市场业务中的应用

之前,我们主要针对大语言模型的基本内容、技术应用原理、历史沿革、主流大语言模型及未来发展趋势进行了简单介绍。本节,将结合商业银行金融市场业务的实际业务场景,阐述以OpenAI的GPT-4为例的大语言模型(LLM)在该场景下的实际应用案例,讨论大语言模型(LLM)如何重塑现代金融市场业务从业人员的工作习惯。

首先,我们先定位商业银行金融市场业务的概念、商业银行金融市场业务的业务场景及工作场景。首先,商业银行的金融市场业务指持有金融许可的银行及非银机构等同业合作而发生的资产、负债、中间业务,主要运用了债券、基金、汇率、权益、期权、票据等金融工具,发生相关的投融资及中间服务等业务。

金融市场业务的整体业务架构又可细分为资产类、负债类、中间服务收入类及客户管理的业务场景。资产类业务含广义同业投资(债券、基金、资管计划、信托计划、理财)、同业资金拆出、存放同业、逆回购、同业借款等业务;负债类业务含同业存单、中央银行借款、同业存放、同业资金拆入、正回购业务;中间服务收入类业务含国债承销发行、票据抵押、同业代付、金融租赁等业务;客户管理服务含客户准入、评级、授信、同业客户日常管理等业务场景。

由此可见,商业银行的金融市场从业人员日常面对业务场景纷繁复杂,其中,最为显著的是日常信息量过载和快速变化的市场环境。金融市场的动态性要求从业人员不仅要迅速准确地处理和分析大量的数据,还要对市场趋势做出及时反应。此外,在同业客户管理场景中的,应对同业客户个性化的客户需求,也对从业人员提出了更高的要求。如,深厚的专业知识素养、求是的学习精神、高效的数据分析能力和敏锐的市场洞察力及较强的同业间的沟通交流能力。伴随而来的是工作难度提升带来的工作效率下降、工作负担提升的挑战。

伴随着大语言模型(LLM)的出现,特别是多模态的大模型的应用与推广,将为金融市场业务提供了前所未有的支持,通过深度学习及大数据分析,诸如GPT-4等模型将帮助从业人员自动处理和分析大量的金融数据、财务数据、市场分析报告、交易记录和新闻舆情动态,赋能从业人员快速抓取市场关键信息、做出更加及时的市场动态的预测,提高市场择时的准群性和效率。同时,大语言模型(LLM)支持定制化的投研报告输出,依赖于大语言模型可以根据其自然语言处理技术,自动化生成投研报告及市场分析报告,一定程度上,减轻了从业人员在报告撰写及文档编辑上的负担。

如Bloomberg发布的Bloomberg的GPT,已拥有500亿个参数,经过特别训练以支持金融行业内的各种自然语言处理(NLP)任务。通过泛化的金融数据进行训练,包括Bloomberg四十年积累的金融文档和公开的数据集,形成了一个超过700亿token的庞大训练语料库;Bloomberg GPT通过自动化的风险评估、财务分析,甚至可以实现自动化会计、审计、投资活动,从而显著提高了从业人员的效率和准确性。

此外,大语言模型(LLM)在客户管理及服务方面也可协助从业人员,提升服务的个性化及效率,模型可以根据客户的个体画像、交易数据及客户的需求偏好,通过问答的形式,帮助从业人员为客户定制化投资建议及进行差异化的产品推荐,极大提升同业客户的满意度及忠诚度。不仅加深了银行与客户之间的关系,也使银行能够更有效地进行客户细分和目标市场营销。

另外,大语言模型(LLM)将通过流程自动化的形式,促进金融市场从业人员的工作流程和工作习惯的变革,为未来从业人员的工作形式,提供了丰富的想象空间。变革传统依赖于手工处理及工作流程,向全自动化的替代。畅享未来,复杂的单据审批流程及操作流程可以通过对话式模式进行处理,单据可以通过图片自动化生成。这一系列的变革,将从底层重塑金融市场从业人员的工作习惯及工作方式。

总而言之,在人工智能时代,金融市场业务的复杂性对从业人员挑战愈发严峻。在日益增长的信息量和客户服务需求的个性化面前变得尤为突出。在这种背景下,大型语言模型(LLM)如GPT-4,BloombergGPT的出现,为金融行业带来了革命性的变化。通过自动化处理大量数据和提供深度分析,显著提高了从业人员的工作效率,使从业人员能够更专注于具有更高价值的任务如决策制定和客户关系管理。此外,通过精细调整和优化针对特定金融任务的模型,Gpt-4等LLM在市场分析、风险评估和策略制定预测等方面展现出卓越的性能,进一步提升了金融服务的质量和效率。之后,笔者将以三个金融市场业务的具体工作场景,以GPT-4为工具,对其进行金融方向的提示词调整,分享GPT-4的在实际工作任务中的应用。

案例一:宏观市场分析报告自动化撰写

在日常的商业银行金融市场业务活动中,对于中国债券市场的宏观基本面分析、经济高频数据的理解分析、资金面及流动性分析、债券收益率趋势分析、利率期限结构的判断及后市走势的判断及后续债券市场的策略分析,是一项经常化的任务。传统的工作流程中,从业人员需要从公开市场搜索大量的经济数据、市场策略研究报告、机构观点等文本数据,结合自身的工作经验及市场感知,对文本数据进行二次加工后,再形成近期市场的宏观分析报告和后市策略。将这项工作结构化后,工作步骤可提炼为“拟定分析目标-构建分析框架-收集相关数据-数据处理及二次加工-构建分析报告”等五步关键工作流。其中,大量的工作步骤重复且冗长,从业人员通过手工收集并处理数据再撰写分析报告,完成以上工作流消耗了大量的时间,降低了工作效率,没有将真正的时间花在对于市场的决策及判断之上。我们将介绍通过GPT-4帮助从业人员解决这一冗长的工作流。

我们可以通过GPT-4基础功能及更新的Mention功能,利用“@”功能键构建了一个专注于利率债市场宏观经济数据虚拟分析师“小赵”,并通过多次公开市场的数据的抓取及数据预处理机制,不断再调整“小赵”模型,逐步优化模型泛化功能,以下是模型的功能展示。首先,可以通过“打印分析目录”命令打印小赵的全部分析目录,AI可以基于主流的研究报告的结构,形成“利率债宏观环境分析模型”的分析目录(该目录可根据个体需求通过修订GPT-4的参数进行改变,以下仅为示例),并提示“请输入**/分析 <希望分析的xx国家利率债宏观环境>**,以根据上述利率债宏观分析模型分析报告目录进行分析。”

图片

(图6:AI宏观分析师“小赵”分析目录展示)

之后,我们再以“/分析0.2 2023年中国货币政策及财政政策分析”命令返回给虚拟分析师小赵,让“小赵”帮助我们输出对于2023年中国的货币政策及财政政策观点(见图片7 & 8),我们可以直观的看出,AI分析师小赵已经初步具备了初级分析师般对于中国财政政策的分析和解读能力;同时,从业人员还可以追问、更清晰的语言命令、或通过追加分析文本的样本案例对“小赵”进行增量训练,以完善“小赵”在宏观分析全领域或特定领域(如:政策分析)的模型输出精度。

图片

图片

(图7 & 8:AI宏观分析师“小赵”货币政策及财政政策分析结果展示)

最后,还可以通过“帮我总结一份2023年中国宏观政策分析报告”命令,让AI分析师帮我们形成一份简单的分析报告,随着我们给“小赵”的提示命令完整程度提升,“小赵”对于我们的指令的回复精度就会越高。

图片

在这里插入图片描述

(图 9 & 10:AI宏观分析师“小赵”自动化生成的宏观政策分析报告)

案例二:对于发行主体的舆情监控

在金融市场从业人员的日常工作中,对于投资标的主体的风险把控,如发行主体的财务指标恶化、管理层重大变动、纳入失信人名单及法院被执行人名单及其他负面舆情,时刻影响着从业人员对于投资标的风险评估和投后决策,也是合规检查中必经的业务流程。传统的业务实操过程中,从业人员一般通过公开网站搜索、国家信用公示系统搜索、或通过Wind、Choice的舆情监控数据库进行相关的数据下载并整合成为舆情监控分析报告。在此,我们将介绍,如何基于GPT-4构建的舆情监控分析引擎,自动化的生成对于被投资标的主体的舆情分析报告。

同样,我们通过GPT-4基础功能及更新的Mention功能,利用“@”功能键构建了一个专注于发行主体舆情分析的分析师“小唐”,通过命令“打印分析目录”获取发行主体的舆情分析报告目录,并提示了“请根据您的需要,选择想要深入了解的章节,并输入相应的指令(例如:“/开始 0.1”)来开始分析。”

图片

(图11:AI舆情分析师“小唐”分析目录展示)

我们以“0.2负面舆情分析”章节为目标章节,以“中国恒大”为例进行负面舆情的分析,我们以“/分析0.2 2023年中国恒大的负面舆情,要求搜索5条以上的行文”命令返回给虚拟分析师“小唐”,帮助我们分析2023年发行人主体中国恒大的负面舆情(如图12所示),我们可以看到,小唐通过自动化的公开网站(百度、必应、财新、第一财经、雪球、东方财富网等)搜索和摘取,自动总结了2023年中国恒大集团的负面新闻,并对负面新闻进行的初步的总结性论述,同样,AI分析师“小唐”也具备了初级分析师对于发行主体的负面舆情的分析能力,并且同时也可通过追问、更清晰的语言命令、追加分析文本的样本方式,提示AI分析的输出文本的质量,例如,我们通过“开始 0.2 针对2023中国恒大财务恶化情况进行重点分析,要求多源头搜索,用中文呈现,严格按照分析目录执行”命令,让AI“小唐”重点关注财务恶化情况,将会得到完全不同维度的结果,这是因为大语言模型LLM自动通过Attention机制去识别了请求头中“财务恶化”作为“硬”权重的原因。(见图12 & 13)

图片

(图12:AI舆情分析师“小唐”-中国恒大2023负面舆情分析)

图片

(图13:AI舆情分析师“小唐”-中国恒大2023财务恶化情况分析)

案例三:自动化公司财务报表分析

财务报表分析是金融市场从业者、甚至财会工作者们绕不开的一个工作场景;主要的目标围绕主要经营及财务指标去判断公司的战略发展及实施情况、经营情况、财务健康程度、主要的财务风险等,在商业银行的金融市场业务中,针对同业客户管理中的评级、准入、授信业务环节对于客户财务情况、财务指标的理解,财务报表分析的业务流程至关重要。在传统的工作流中,一般会采用人工阅读客户的年报PDF或提供数据指标表方式,进行人工录入和抓取相关数据,工作流程既冗长且存在一定的操作风险。在此,我们介绍,通过基于GPT-4构建的财务报表分析引擎如何进行自动化的财务报表分析,以极大地提升从业人员的业务工作效率。

类似,通过GPT-4构建AI虚拟财务报表分析师“小邱”来完成这个需求,首先让小邱打印分析目录,并提供给“小邱”一个公开发布中国工商银行的2022年的财务报告,用结构化命令“对报告进行详细的分析总结,要求:1.不要漏掉任何数据,对数据要有相关的解读 2.严格执行分析目录 3.用中文输出”,让AI输出“0.5资深金融机构类财务指标分析”的相关内容。(见图14、15)

图片

(图14:AI财务分析师“小邱”-财务报表分析目录展示)

图片

(图15:AI财务分析师“小邱”-中国工商银行财务报表分析)

由于财务数据具有高动态性、高时间敏感性和高噪声的特点,对于基础数据的清洗及标记的难度也会更高。所以针对财务类型定制大语言模型需要设置更加精准的提示词和输入命令,便于对原生的GPT-4模型进行调整,并需要给予重点分析的财务指标更多的权重及训练样本,以提升GPT-4模型的输出效率,并且在对于GPT-4的命令输出中,需要提供更加多元化的分析视角和数据源(包括但不限于:财经新闻、上市公司公告、财经类社交媒体、财经类数据库等)。利用基于原生大语言模型LLM之上的提示词调整,是一种更为高效且具有成本效益的方案。

综上所述,结合实际工作案例,我们可以发现,大型语言模型(LLM)的引入不仅解决了金融市场业务日常工作中的核心挑战,还促进了工作流程和习惯的根本性变革。通过利用这些先进技术,金融市场从业人员能够更有效地处理信息、提升决策质量,并为客户提供更加个性化和高效的服务。未来,随着这些模型的不断发展和应用深入,其在金融领域的潜力将进一步被挖掘,为从业人员的工作习惯带来更广泛的变革和发展。

四、Prompt提示词的构建

在了解上述大语言模型对于金融工作者的工作习惯的影响后。会形成一个问题,作为金融市场的从业人员,作为人工智能及AI领域的专家和学者,如何有效利用原生的大语言模型(LLM)客制化一个的金融方向分析模型呢?且如何提升定制化的大语言模型(LLM)回复质量及精度,避免大量的噪声数据的出现呢?

为了回答这两个问题,在这一章节,我们将继续讨论,采用人类的自然语言与GPT-4等大语言模型进行有效“沟通”,即如何进行Prompt提示词工程的构建。

Prompt指传递给语言模型的结构化指令,相当于与大语言模型沟通的媒介与桥梁,通过Prompt告诉语言模型主要的工作内容、工作目标、工作流程及给予相关的角色和任务指示,还可以Prompt工程赋予大语言模型(LLM)上下文和实景案例和训练文本等,指导大语言模型(LLM)向定制化方向的调整。同步的,Prompt提示词的开发,也延伸出Prompt工程这一概念,Prompt工程指代提示词的开发及优化,以便Prompt更好向大语言模型的自然语言的表达传递,包含测试不同的提示词格式、考虑不同的上下文等方式改进模型对提示词的响应能力,在许多情况下,通过精心设计和优化的提示,可以显著提高模型的性能,使其更好地适应各种任务和应用场景。

Prompt的构建方法,一般采用Markdown的提示词的语法,Markdown就是一种让你专注于文字内容而非格式的工具。你只需要掌握一些简单的语法,就能创作出结构丰富、格式清晰的文档。通过演示一段完整的Markdown语法撰写的GTP-4 Prompt提示词(见图利率债分析师“小李”),来理解Prompt提示词工程的结构。

语法上,通过图片呈现中,中我们可以看出Markdown语法下,采用#来创建一级标题,通过##来创建二级标题,每一层级的赋予权重依次递减,最多可以赋予六级标题,同级别关系平行,通过“[]”及“<>”来表达链接或引用参考,可以通过“-”符号或直接采用项目序号来创建有序列表。

结构上看,基础的提示词可以按照# Role: 角色、# Profile 提示词简介、# Goals: 目标、# Skills: 技能、# Rules/Constrains: 规则/约束、# Text structure文章框架、# Tone:语气口吻、# Examples:示例、# Workflow: 创作流程、# OutputFormat: 输出格式、# Initialization: 初始化步骤的结构进行构建。

一个好的结构化 Prompt 模板,某种意义上是构建了一个好的全局思维链。AI的整体思维链是这样的:Role (角色) -> Profile(角色简介)—> Profile 下的 skill (角色技能) -> Rules (角色要遵守的规则) -> Workflow (满足上述条件的角色的工作流程) -> Initialization (进行正式开始工作的初始化准备) -> 开始实际使用。利用该架构创建提示词,并传给大语言模型,将有效提示GPT模型输出效率。好的提示架构可以参考第一性原则和麦肯锡的MECE框架,将更有利于构架结构化的提示词框架。

关于Prompt工程及提示词调整(Prompt Turning),需要了解大语言模型能力上下限,熟悉业务知识,能够把抽象信息进行具象化的清晰表达,并且不断对原生大模型在特定任务的数据集上进一步训练,通过精心设计的提示,引导模型生成特定的输出,而不需要昂贵的模型重新训练过程。在此,不再过多地赘述Prompt提示词工程复杂的工程原理。

在这里插入图片描述

在这里插入图片描述

图片

(图16:AI利率分析师“小李”-Prompt结构化提示词)

五、风险提示与防范

最后,需要强调的是,大语言模型(LLM)尽管以其强大的功能,可能对日常工作带来变革,但是,无论何时,风险管理都是不可或缺的一环。在享受大语言模型(LLM)带来的便利的同时,我们也必须对大语言模型(LLM)应用潜在的风险保持警觉,包括访问限制、数据安全性、模型滥用、模型输出偏差以及结果的不确定性等问题。

访问限制,指目前海外的主流的如OpenAI的GPT-4,谷歌Gemini,Microsoft的Copliot等大语言模型并未向国内的用户开放注册,导致国内的用户无法通过正常的手段访问,仅能通过国内镜像方式进行访问,这一访问限制极大地限制了国内用户对于大语言模型学习和认知的积极性。

数据安全性风险,大语言模如果管理或监控不当,大型语言模型会带来严重的数据安全风险,特别是现阶段,不推荐将私密数据进行上传,可能导致个人信息、私密数据的泄露;同时,GPT-4无法控制使用的主观意识形态,存在恶意用户;可能通过大语言模型参与网络钓鱼诈骗并制作垃圾邮件、或者通过偏见的意识形态对模型进行重新编程从而形成错误信息的传播。

模型滥用,显而易见,诸如GPT-4的强大功能,可能会造成人们对其使用的路径依赖而不去对模型输出结果进行合理化判断,从而造成模型滥用的风险。所以,笔者强调,大语言模型的模型输出结果只能用作辅助工具之一,而不是作为日常工作的完全替代,这是非常危险的行为。

模型输出偏差以及结果的不确定性,大型语言模型的输出特性和结果的不确定性使得它们常被视为难以透彻理解的黑盒系统,挑战其生成过程和依据的明确解释性。这一点在关键决策制定和对敏感领域的应用中尤其成问题,因为其结果的可靠性和信任度难以被确认。进一步地,这些模型有可能从其训练数据中吸收并复现偏见及误差,这在处理敏感议题和社会性问题时可能导致误导性和不精确的输出。针对这一问题,需要模型开发者采取更为细致和审慎的数据处理及模型调整方法。

六、结论

在当今人工智能技术高速发展的时代背景下,大语言模型(LLM)已经在金融市场领域引起了广泛关注,并逐渐成为金融市场工作者不可或缺的工具。本文通过对国内外主流大语言模型的技术原理、应用案例以及Prompt指令构建和优化的深入分析,展示了LLM如何在金融市场中重塑工作习惯,提高数据处理效率,深化市场洞察力,促进决策的精准性。特别是在宏观市场分析、舆情监控、公司财务报表分析等方面,LLM的应用展现了其强大的自动化处理和分析能力,将为金融市场工作者提供了前所未有的支持和便利。

然而,尽管LLM为金融市场带来了诸多便利,但其应用同时伴随着不少挑战和风险,例如数据隐私保护、模型偏见、结果不确定性等问题。因此,也强调在享受LLM带来便利的同时,金融市场工作者需要对这些潜在风险保持高度警觉,并采取相应的风险管理措施。

未来,随着技术的不断进步和优化,预计大语言模型(LLM)将在金融市场领域发挥更加重要的作用,不仅能进一步提高工作效率和决策质量,还将推动金融服务的创新和发展,重塑金融市场工作者的工作习惯。对于金融市场工作者而言,掌握和应用LLM将成为适应未来市场变化的关键。因此,如何有效利用LLM,优化其应用效果,同时妥善应对伴随而来的挑战和风险,将是金融市场工作者需要持续关注和研究的重要课题。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
  • 9
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值