大模型技术实践 | 从零开始学 langchain 之搭建最小的 RAG 系统

RAG 可以说是 23 年以来到现在,最为火热的大模型应用技术了,很多人都有了很多经典的研究。而对于新人来说,有些代码十分复杂,导致只看表象并不理解其原理。今天,就利用 langchain 和大家一起搭建一个最简单的 RAG 系统,一起来学习一下吧。

langchain 安装

目前,langchain 的版本已经更新到 0.1.X,建议使用最新的稳定版本,不然之前的代码会出现兼容性的问题。

Retrieval | ️ LangChain

RAG 原理解析

RAG 的原理已经有很多文章都提到了,这里我们再复习一下,下面是从论文中截取的图,欢迎查看这篇原文。

Retrieval-Augmented Generation for Large Language Models: A Survey

从图中,我们进行进一步的拆解,可以看到,主要分为下面几个步骤:

1、索引建立,将文本数据通过向量化的模型导入到向量数据库进行存储

2、检索,根据用户的输入去检索最相关的 n 个片段

3、生成,将上下文和用户问题拼接成提示词,输入给大模型,得到最后的答案。

索引建立

我们使用 chroma 作为向量数据库去存储用户数据,并调用 BGE 的向量去完成向量化的操作。原始的数据,为了方便展示,使用了 markdown 格式的数据,可以直接用 textloader 进行加载。

详细代码如下:

python
import os
from langchain.embeddings.huggingface import HuggingFaceBgeEmbeddings
from langchain_community.document_loaders import TextLoader
from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from model_factory import yi_llm

BGE_MODEL_PATH = "BAAI/bge-large-zh"
root_dir = "./zsxq"

def extract_file_dirs(directory):
    file_paths = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith(".md"):
                fp = os.path.join(root, file)
                file_paths.append(fp)
    return file_paths

files = extract_file_dirs(root_dir)
print(files)
loaders = [TextLoader(f) for f in files]

docs = []
for l in loaders:
    docs.extend(l.load())

text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=20)
documents = text_splitter.split_documents(docs)
huggingface_bge_embedding = HuggingFaceBgeEmbeddings(model_name=BGE_MODEL_PATH)
vectorstore = Chroma.from_documents(documents, huggingface_bge_embedding, persist_directory="./vectorstore")

query="在知识星球里,怎么快速找到最有价值的内容?"
result = vectorstore.similarity_search(query, k=3)

for doc in result:
    print(doc.page_content)
    print("********")

检索

我们很容易的使用下面这个语句,将向量数据库转为检索器进行使用。然后可以调用检索器的get_relevant_documents 方法去检索得到相似的文本片段,然后就可以使用 langchain 的 LCEL 语言去调用了。

python
retriever = vectorstore.as_retriever()
docs = retriever.get_relevant_documents(query)

生成

我们首先定义一个简单的提示词,将检索得到的上下文片段和用户的问题进行拼接,然后输入给大模型进行回答。为了方便最后对比各种方法的效果,我们使用了 StrOutputParser 去提取最后输出的文本。

代码如下:

python
template = """Answer the question based only on the following context:

{context}

Question: {question},请用中文输出答案。
"""
prompt = ChatPromptTemplate.from_template(template)
model = yi_llm


def format_docs(docs):
    return "\n\n".join([d.page_content for d in docs])

chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | model
    | StrOutputParser()
)

response = chain.invoke(query)
print(response)
print(yi_llm.invoke(query))

结果对比

RAG 输出结果

LLM 输出结果

原文

分析,从输出的结果上看,RAG 的输出命中了原文的搜索功能,但是增加了关注订阅,推荐这些原文没有提到的内容,仍然会存在幻觉。

LLM 输出的结果,看起来是对的,但实际上和原文并不相符,应该是用的自己内部的知识,也存在幻觉问题。

我们只是搭建了一个简单的示例,因此,RAG 的结果,是还有待改进的,不能立马满足我们的要求。

python
import os
from langchain.embeddings.huggingface import HuggingFaceBgeEmbeddings
from langchain_community.document_loaders import TextLoader
from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from model_factory import yi_llm

BGE_MODEL_PATH = "BAAI/bge-large-zh"
root_dir = "./zsxq"

def extract_file_dirs(directory):
    file_paths = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith(".md"):
                fp = os.path.join(root, file)
                file_paths.append(fp)
    return file_paths

files = extract_file_dirs(root_dir)
print(files)
loaders = [TextLoader(f) for f in files]

docs = []
for l in loaders:
    docs.extend(l.load())

text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=20)
documents = text_splitter.split_documents(docs)
huggingface_bge_embedding = HuggingFaceBgeEmbeddings(model_name=BGE_MODEL_PATH)
vectorstore = Chroma.from_documents(documents, huggingface_bge_embedding, persist_directory="./vectorstore")

query="在知识星球里,怎么快速找到最有价值的内容?"
result = vectorstore.similarity_search(query, k=3)

for doc in result:
    print(doc.page_content)
    print("********")

retriever = vectorstore.as_retriever()

template = """Answer the question based only on the following context:

{context}

Question: {question},请用中文输出答案。
"""
prompt = ChatPromptTemplate.from_template(template)
model = yi_llm


def format_docs(docs):
    return "\n\n".join([d.page_content for d in docs])

chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | model
    | StrOutputParser()
)

response = chain.invoke(query)
print("RAG 输出结果:",response)

print("LLM 输出结果:",yi_llm.invoke(query).content)

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

  • 18
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值