5个优化Python代码的小技巧,助你更上一层楼

img

Python是一种功能强大且用途广泛的编程语言,以其简单和易于使用而闻名。然而,与任何解释语言一样,Python代码的执行有时比编译语言慢。幸运的是,有各种技术和实践可以用来优化Python代码以提高性能。

这里,我们将探讨Python中的几种性能优化技术,包括分析、优化数据结构、使用内置函数和库,以及利用即时编译器(JIT)。还将提供实际例子来说明这些技术,帮助你写出更高效的Python代码。

1.性能优化的分析

分析是测量和分析代码的性能以识别性能瓶颈的过程。Python提供了内置的模块,如cProfiletimeit,可以用来进行分析。可以使用cProfile来分析代码中不同函数或方法所花费的时间,使用timeit来测量特定代码片段的执行时间。这里有一个示例:

import cProfile


def slow_function():
    # 模拟一个慢速函数
    for i in range(10**6):
        pass


def fast_function():
    # 模拟一个快速函数
    for i in range(10**3):
        pass


# 配置文件slow_function
cProfile.run('slow_function()')
# 配置文件fast_function
cProfile.run('fast_function()')

在此示例中,对两个函数slow_functionfast_function进行分析,以测量它们的执行时间。分析结果可以帮助确定哪个函数的执行时间更长,可以进一步优化。

2.优化数据结构

选择正确的数据结构可以显著影响Python代码的性能。Python提供了多种内置的数据结构,如列表、元组、集合和字典,每一种结构都有自己的特点和性能。为一个特定的用例选择最合适的数据结构可以极大地优化代码执行。这里有一个示例:

# 低效的列表连接
my_list = []
for i in range(10000):
    my_list = my_list + [i]

# 使用列表生成式进行优化的列表连接
my_list = [i for i in range(10000)]

在此示例中,比较了两种方法来创建一个从0到9999的数字列表。第一种方法是在一个循环中使用列表连接,由于每次迭代都要创建新的列表,所以会导致性能不佳。第二种方法使用列表理解,这种方法更有效,更优化。

3.利用内置的函数和库

Python提供了一套丰富的内置函数和库,这些函数和库都是经过性能优化的。使用这些内置函数和库可以大大提升Python代码的性能。这里有一个示例:

# 使用自定义比较函数进行低效排序
my_list = [5, 2, 9, 1, 7]
sorted_list = sorted(my_list, cmp=lambda x, y: x - y)

# 使用内置key函数进行优化排序
sorted_list = sorted(my_list)

在此示例中,比较了两种对一个数字列表进行排序的方法。第一种方法使用一个自定义的比较函数,由于lambda函数的使用,它的速度会比较慢。第二种方法将其删除,使用带有默认key参数的sorted函数,这种方法经过优化,效率更高。

4.利用即时编译(JIT)

编译器Just-In-Time(JIT)编译是一种可以在运行时动态优化和编译部分代码以提高其性能的技术。Python提供了JIT编译库,如PyPyNumba,可以用来优化性能关键的代码。看下面的示例:

import numba


@numba.jit
def fibonacci(n):
    if n <= 1:
        return n
    else:
        return fibonacci(n-1) + fibonacci(n-2)


result = fibonacci(10)

在此示例中,使用numba库对一个计算斐波那契数列的递归函数进行了JIT编译。JIT编译在运行时优化了该函数,与非优化版本相比,性能得到了提高。

5.管理内存以实现性能优化

有效的内存管理可以极大地影响Python代码的性能。诸如内存分析、垃圾收集和具有内存高效的数据结构等技术可以用来优化内存的使用并减少占用。这里有一个示例:

import numpy as np


# 大数组的低效内存使用
arr1 = np.ones((1000, 1000))
arr2 = np.ones((1000, 1000))
result = np.dot(arr1, arr2)

# 优化内存使用视图和广播
arr1 = np.ones((1000, 1000))
arr2 = np.ones((1000, 1000))
result = np.dot(arr1, arr2, out=np.empty_like(arr1))

在此示例中,比较了两种使用NumPy对两个大数组进行乘法的方法。第一种方法是使用常规的数组乘法,它创建了中间数组,可能会导致低效的内存使用。第二种方法使用视图和广播来优化内存使用并减少占用。

总结

对于任何想要编写高效和高性能代码的Python开发者来说,Python性能优化是一项基本技能。可以通过使用以下技术极大地优化Python代码的性能:

  • 分析
  • 优化数据结构
  • 利用内置函数和库
  • 利用JIT编译器
  • 有效管理内存

仔细分析和优化代码中的性能关键部分以达到最佳性能是很重要的。利用本文提供的示例和技术,读者们可以开始优化Python代码,提升性能。

关于Python学习指南

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!

👉Python所有方向的学习路线👈

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)

在这里插入图片描述

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python70个实战练手案例&源码👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉Python大厂面试资料👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

在这里插入图片描述

👉Python副业兼职路线&方法👈

学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。

在这里插入图片描述

👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方CSDN官方认证二维码或者点击链接免费领取保证100%免费

为了实现具有动态效果的樱花树绘制,我们需要利用turtle库中的图形绘制功能以及一些编程技巧来模拟樱花树的生长花瓣的飘落。下面提供了一个详细的代码实现步骤,帮你完成这一项目: 参考资源链接:[Python实现动态樱花树绘制教程:代码与实例](https://wenku.csdn.net/doc/1xtvjm7d5a?spm=1055.2569.3001.10343) 1. **导入库**: 首先需要导入turtle库、random库time库,以便我们可以使用它们的功能。 2. **初始化设置**: 创建一个turtle对象,并对其进行基本设置,包括隐藏画笔、设置画布大小以及追踪模式。 3. **绘制樱花树躯干**: 定义一个递归函数Tree(branch, t),通过改变画笔的颜色粗细来模拟树枝的生长。当树枝长度小于一定值时,函数停止递归,返回上一级。 4. **实现花瓣飘落效果**: 使用Petal(m, t)函数绘制樱花瓣,并通过循环遍历每个花瓣的位置、大小方向,使得花瓣能够以动态效果飘落。 5. **控制绘制过程**: 使用循环结构来控制树干花瓣的绘制过程。可以通过随机数生成器来为每棵树添加独特的形态颜色。 6. **循环绘制多棵树**: 通过外层循环控制生成多棵樱花树,以展示森林效果。 下面是完整的示例代码,展示了如何通过上述步骤绘制动态樱花树: ```python import turtle import random import time def setup(): # 初始化设置 t = turtle.Turtle() t.hideturtle() turtle.setup(width=800, height=600) turtle.tracer(0) return t def draw_branch(branch_length, t): # 绘制树枝 if branch_length > 5: # 绘制右侧树枝 t.forward(branch_length) t.right(20) draw_branch(branch_length - 15, t) # 返回 t.left(40) draw_branch(branch_length - 15, t) # 绘制左侧树枝 t.right(20) t.backward(branch_length) else: # 绘制樱花花瓣 draw_petal(branch_length, t) def draw_petal(size, t): # 绘制花瓣 t.color('lightcoral') t.begin_fill() t.circle(size) t.end_fill() t.left(360 / 5) def main(): # 主函数 t = setup() for i in range(10): t.left(random.randint(120, 160)) t.penup() t.backward(random.randint(100, 300)) t.pendown() t.color('brown') t.pensize(random.randint(2, 4)) draw_branch(random.randint(80, 120), t) t.penup() t.sety(t.ycor() + random.randint(20, 50)) t.pendown() for j in range(50): draw_petal(random.randint(5, 10), t) t.penup() t.forward(random.randint(50, 100)) t.left(random.randint(350, 360)) t.pendown() time.sleep(1) turtle.done() if __name__ == '__main__': main() ``` 这段代码提供了一个基本的动态樱花树绘制示例,你可以通过调整参数来观察不同的绘制效果。为了获得更深入的理解更多的实践经验,可以阅读《Python实现动态樱花树绘制教程:代码与实例》。这份资料不仅提供了上述代码的详细解释,还介绍了如何优化动画效果、调整颜色形状,以及如何进行项目打包等高级话题。通过进一步学习这些内容,你将能够在图形编程动画制作方面更上一层楼。 参考资源链接:[Python实现动态樱花树绘制教程:代码与实例](https://wenku.csdn.net/doc/1xtvjm7d5a?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值