在过去的一年多里,我们能够看到越来越多的车企开始在座舱领域发力,在车端部署 AI 大模型。Mind GPT、NOMI GPT 以及文心一言的上车,让我们看到了正处于发展瓶颈期的智能座舱迎来了突破。
在这背后,高算力座舱芯片的需求逐渐被放大。高性能芯片,成为了决胜 AI 座舱时代的基石。
最近,汽车产业的老玩家联发科发布了三款智能座舱 SoC,宣告将推动汽车产业进入「 AI 定义座舱」的时代。
这三款产品分别是 CT-X1、CT-Y1 和 CT-Y0,其中 CT-X1 基于 3 nm 制程工艺打造,CT-Y1 和 CT-Y0 基于 4 nm 制程工艺打造,三款产品均支持先进的端侧生成式 AI 技术。
业务张力看布局
这其中有几点非常重要,一是在消费电子领域的长期积累;二是持续深耕智能汽车领域,在智能座舱、车联网、关键组件等市场达成千万级出货量;三是笃定舱驾融合的发展趋势,选择与 AI 芯片市场的绝对王者英伟达进行合作。
首先,联发科是消费电子领域芯片产业的龙头供应商,根据研究机构 Counterpoint 统计,2023 年第四季度联发科占据智能手机 SoC 市场 36% 的出货量份额,连续三年多保持第一。常年以来,联发科在智能手机 SoC 领域都保持着强势地位。
在智能汽车领域,联发科也并非是「旁观者」的身份。联发科技资深副总经理、运算联通元宇宙事业群总经理游人杰表示:「天玑汽车平台在市场中保持持续增长的势头,其中天玑汽车座舱平台全球市场出货量已超 2,000 万套,天玑汽车联接平台更获得全球头部汽车制造商采用,天玑汽车卫星导航系统和电源管理芯片等关键组件的出货量和市场份额持续增长,天玑汽车驾驶平台的进度也十分顺利」。
AutoLab认为,以上几点都给他们研发更加先进的座舱 SoC 积累了车用级前装经验。
联发科技资深副总经理、运算联通元宇宙事业群总经理 游人杰
旗舰车芯看制程
我们再来看看联发科刚刚发布的三款产品,具体的参数和性能如何。
天玑汽车座舱平台CT-X1、CT-Y1 和 CT-Y0,这三款产品定位将覆盖从旗舰(CT-X1)到高端(CT-Y1、CT-Y0)车型,以满足不同级别车型的算力需求。
CT-X1 采用 3nm 制程,CT-Y1 和 CT-Y0 采用 4nm 制程。作为对比,高通目前的旗舰芯片骁龙 8295 采用的是 5nm 工艺制程。
虽然CT-X1 没有具体跑分数据,但是次旗舰芯片 CT-Y1 座舱 SoC 在安兔兔车机版上的实测跑分超过了 107 万,战平骁龙 8295。采用 3nm 制程的 CT-X1 性能比骁龙8295强30%,从架构来看这还是一个非常保守的数字,AI算力则比高通骁龙 8295强4-5倍,非常夸张。
CT-X1 支持 130 亿参数的 Al 大语言模型,可在车内运行多种主流的大语言模型(LLMs)和 Al 绘图功能(Stable Diffusion),支持基于 3D 图形界面的车载语音助手、丰富的多屏互动与显示技术,驾驶警觉性监测等先进的 Al 安全和娱乐应用。
也就是说,目前行业流行的大模型应用,例如 AI 绘图功能、多屏联动、多模态交互等功能,这款芯片都能满足。
CT-Y1 和 CT-Y0 采用 4nm 制程,在性能层面略微弱于旗舰芯片 CT-X1,但是同样支持先进的端侧生成式 AI 技术。CT-Y1 和CT-Y0支持 70 亿参数的 AI 大语言模型。
并且天玑汽车座舱平台整合了 Armv9 架构,内建的 AI 计算单元和端侧生成式 AI 轻量化技术,可以在满足 AI 运算精度的同时,更高效地利用内存带宽与内存容量。
同时它们都能够支持大语言模型、以一块芯片带动多个屏幕、具备很强的多媒体和音频处理能力,并且能够支持车外360度环视、行车记录和座舱内监测看护等功能,更好地服务于道路交通安全。
总结来说,这三款产品的性能放在市场里都非常能打,任何一款产品都支持 AI 时代的座舱强需求,并且横跨的范围包括了人机交互、驾乘体验、娱乐和办公需求等等,甚至可以说这就是为 AI 时代打造的 SoC。
AI 体验看算力
过往我们所说的智能座舱,往往指的是能够实现用户具体指令的智能,在此基础上满足用户影音等舒适性需求。但是在 AI 定义座舱的时代,「智能」的维度将会被拉到前所未有的高度。
首先,大模型的上车会在人机交互与社交、办公等应用场景带来全新的体验。
现在的人机交互方式,大多数局限于语音的交互,理想等车型具备手势、动作等多模态的交互体验。还有部分车型会通过车内 DMS 摄像头捕捉驾驶员动作,从而做出对应的策略。例如当驾驶员手指竖放在嘴巴上时,系统会自动关闭全车音响。
在 AI 算力激增的 AI 座舱时代,交互的方式将会变得更加丰富,除了上述的语音、手势、动作等交互,车内的传感器甚至会无时无刻地感知车内人员的状态,甚至包含了情绪。
还有一个较为冷门的应用,当我们在车上开会时,AI 大模型能够自动帮我们进行会议纪要的记录;出游时,车载应用能够自动剪辑车内外影像片段。
实现这些场景的背后,需要的是 AI 性能强劲的芯片,并且能够支持 70 亿参数以上的 Al 大模型。
第二大体验提升是驾乘体验和娱乐应用的需求。
一块屏幕往往承载不了行车和娱乐的需求,所以我们也能看到现在的厂家会在车里塞更多的屏幕,并且它们各司其职。但是过往的芯片往往带动不了这么多屏幕,所以车企会在域控里塞至少 2 颗芯片。
未来的趋势一定是「一芯多屏」,即靠一颗芯片带动多块屏幕,且满足不同的需求。例如副驾和后排屏幕完成个性化的视听推荐、AIGC 画图、互动式游戏等功能。行车屏幕端则生成为驾驶员提供的信息,例如餐厅等场所和导航的结合以及其他驾驶信息等等。
我所举的例子只是一部分的应用,端侧大模型的上车能够给用户带来的体验革新是各方面的。大模型上车,用户感知最强的应该就是全时在线大模型车用助手,你的车用助手将从执行指令变为能够预测需求的助手,同时懂百科、能记事。多模态的交互、感知和大模型决策/推荐也让娱乐的丰富性得到大幅提升。
前段时间,一家车企在发布会上秀了大模型舱外感知能力,驾驶员只需要问车用助手前方的车辆,系统就能自动感知、识别。
这就是多模态舱内外感知,系统不仅能够通过麦克风、摄像头、方向盘传感器了解车内人员状态,也能够打通车外的 ADAS 摄像头、环视摄像头,为驾驶员提供周边场景/标识的识别和静态下的监护能力,也就是我们常说的哨兵模式。
高性能的芯片,为车内外全场景的全时交互带来全面的体验革新。
强强联手看未来
以上我们介绍的是联发科座舱 SoC 能够给 OEM 与用户带来的智能座舱体验。
但是目前大家公认的行业趋势是舱驾一体,联发科的对手高通在智驾领域推出了多款 Ride 芯片,同时也有 Flex 这样的舱驾融合芯片。
对于舱驾融合的发展路径,联发科表示认同,并且选择与行业顶级玩家英伟达合作。
联发科于去年5月正式宣布与英伟达达成合作,双方的合作内容是共同为新一代智能汽车提供解决方案,联发科将开发集成 英伟达 GPU 芯粒(chiplet)的汽车 SoC,搭载英伟达 AI 和图形计算 IP。
同时联发科的智能座舱解决方案将运行英伟达 DRIVE OS、DRIVE IX、CUDA 和 TensorRT 软件技术,提供图形计算、人工智能、功能安全和信息安全等 AI 智能座舱功能。对于行业来说,这项合作有望加速舱驾融合时代的到来。
在今年的 3 月 19 日英伟达 GTC 大会上,联发科宣布推出一系列结合 AI 技术的天玑汽车座舱系统单芯片(SoC):CX-1、CY-1、CM-1、CV-1。这四款产品皆支持英伟达 DRIVE OS 软件,可覆盖从豪华(CX-1)到入门级(CV-1)的细分市场,将优质的 AI 座舱体验带入新一代智能汽车中。
这项合作对联发科来说意义非凡,对于为什么选择与英伟达合作,游人杰也总结了几点考虑:
首先,舱驾融合的长远趋势也是联发科与英伟达合作的一个重要的基本思考;其次,过去联发科的成功是在整个产品线的低、中、高端整体的布局,希望通过与英伟达合作,展现在不同产品级别里有竞争力的产品;还有一点极其重要的是,从硬件 SoC,到整个软件,再到整个生态,英伟达是整个 AI 生态圈的龙头厂商,所以联发科也希望借由这个合作,加速联发科在生成式 AI 这个浪潮的元年,能够加速布局和发展。
写在最后
高通在智能座舱 SoC 领域确实有先发优势,占据着很大的市场份额。
但是现如今 AI 座舱还处于较为早期的阶段,目前在车端部署大模型的车企并不多,同时提供的应用也较为有限,与科幻电影里无时无刻不在提供服务的智能助手更是相差甚远。
中汽协数据显示,2023 年全年我国乘用车产销量分别达到 2612.4 万辆和 2606.3 万辆,但是真正在车端体验到 AI 座舱的用户屈指可数,大多数用户的车辆甚至没有装配一套好用的语音交互。
所以,这是一个发展空间还很大的市场,这时候你还会觉得联发科的产品来晚了吗?
汽车机器人化是一场马拉松,我们期待看到联发科这样的头部供应商拿出最顶级的产品,去支持这些马拉松选手,为用户带来更智能化的体验。
END
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
123?spm=1001.2014.3001.5501)这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】