今年是 DeepSeek-R1 系列模型深入千行百业,助力企业全面拥抱 AI 变革 的关键一年!
无论企业是 自研应用,还是基于大模型推出 AIGC 产品,都需要高效部署 DeepSeek-R1。在企业级场景下,采用模型集群方案至关重要,其优势主要体现在以下几个方面:
-
成本效率与自主性
-
- 长期成本优化:避免云厂商API调用费用,尤其在高并发场景下边际成本更低。
- 数据主权保障:敏感数据无需外传,满足金融、医疗等行业的合规要求(如GDPR、HIPAA)。
- 定制化能力:支持模型微调(Fine-tuning)、领域适配(Domain Adaptation)及业务逻辑嵌入。
-
性能与可靠性
-
- 低延迟响应:本地化部署消除公网传输延迟,结合模型量化技术可实现毫秒级推理。
- 弹性扩展:通过Docker动态扩缩容应对流量波动,避免单点瓶颈。
- 高可用架构:多副本部署结合负载均衡(如Nginx/HAProxy)实现服务冗余。
-
技术可控性
-
- 版本迭代灵活:支持灰度发布、A/B测试,快速验证模型优化效果。
- 软硬件协同优化:可针对特定硬件(如NVIDIA GPU+NVLink)优化计算图与算子。
首先,我们在中间件选型时充分考虑了企业的综合成本,最终确定了以下技术组合:
DeepSeek-R1-32B(量化版) + Nginx + Ollama + 4090 GPU
为确保系统的高可用性,至少需要配置两块 4090 GPU。同时,在应用端设置限流机制,当模型负载达到上限时,系统会向用户提供友好的提示。
服务器繁忙,请稍后再试。
总体部署方案
1、选择 Ollama 的 Docker 版本,便于随时跟进 Ollama 的最新版本升级。
2、采用 Nginx 反向代理,实现模型接口的负载均衡。
3、对于 DeepSeek-R1-32B,我们推荐使用基于 Ollama 量化的版本(约 20G),主要考虑其能在单块 4090 GPU 上顺利部署,同时在能力和性能上均能满足需求。当然,如果企业经济实力充足,也可以选择原始版(约 70G),此版本启动一个模型服务需要 4 块 4090 GPU,而实现高可用则需配置 8 块 4090 GPU。
Linux下Ollama的安装
实现目标:确保每个 Ollama 的 Docker 容器独占一块 4090 GPU,并配置独立端口。保证 Docker 启动时 Ollama 服务自动启动,停止 Docker 时 Ollama 服务也随之停止。
执行以下命令创建与启动Docker:
sudo docker run -dp 8880:11434 --runtime=nvidia --gpus device=0 --name DeepSeek-R1-1 -v /model/deepseek-r1-32b:/root/.ollama/models ollama/ollama:0.5.7
第二个Docker可以启动8881端口,选择GPU的1号卡,名字DeepSeek-R1-2,具体命令大家自己写就可以。
Nginx配置
实现目标: 负载所有Ollama提供的模型接口,实现模型高可用配置。
Nginx配置如下:
请求URL示例:
http://ip:80/api/generate
请求cURL示例:
Open WebUI远程验证
下载与安装
地址:https://github.com/open-webui/open-webui
找到“If Ollama is on your computer, use this command:”提示语,并复制命令。
注:我们采用Docker环境部署,本地环境请自行安装。
将复制的命令,在一个新的命令提示符窗口下打开。
安装完成后可以在Docker列表中看到Open WebUI的条目。
2、Open WebUI+DeepSeek-R1
Open WebUI地址:http://localhost:3000
拷贝地址在浏览器中打开,或是点击Docker Open WebUI条目中红框圈住的部分。
打开后的Open WebUI界面如下:
点击“开始使用”,完成管理员账号的创建,配置远程模型,就可以进入聊天界面。
选择“管理员面板”-“外部连接”-“Ollama API”,添加外部地址。
写在最后
通过上述架构设计,企业可构建高可用、低成本的私有化模型服务,同时为后续模型迭代奠定技术基础。
最后让它再为我写一首诗!
我的提示词:
用李白的诗体,写一首诗,随便写点啥主题。
DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。
DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。
DeepSeek的优点
掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。
那么应该如何学习大模型
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【
保证100%免费
】
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】