超实用!Dify快速接入本地MCP服务

Dify 可以通过插件实现 MCP 服务调用,而被调用的 MCP 服务基本可以分为以下两类:

  1. 通用 MCP 服务(非本地 MCP 服务)。
  2. 本地 MCP 服务。

本地 MCP 服务指的是本地通过 Java 或其他语言实现的 MCP 服务器端。

当你会用 Dify 调用本地 MCP 服务,也就意味着你会使用 Dify 调用通用 MCP 服务了,因为实现步骤和原理基本都是一样。

1.什么是MCP?

MCP 是 Model Context Protocol,模型上下文协议,它是由 Anthropic(Claude 大模型母公司)提出的开放协议,用于大模型连接外部“数据源”的一种协议。

它可以通俗的理解为 Java 界的 Spring Cloud Openfeign,只不过 Openfeign 是用于微服务通讯的,而 MCP 用于大模型通讯的,但它们都是为了通讯获取某项数据的一种机制,如下图所示:

img

2.为什么需要MCP?

MCP 存在的意义是它解决了大模型时代最关键的三个问题:数据孤岛***、开发低效和生态***碎片化等问题。

1.打破数据孤岛,让AI“连接万物”

大模型本身无法直接访问实时数据或本地资源(如数据库、文件系统),传统方式需要手动复制粘贴或定制接口。MCP 通过标准化协议,让大模型像“插USB”一样直接调用外部工具和数据源,例如:

  • 查天气时自动调用气象 API,无需手动输入数据。
  • 分析企业数据时直接连接内部数据库,避免信息割裂。

2.降低开发成本,一次适配所有场景

在之前每个大模型(如 DeepSeek、ChatGPT)需要为每个工具单独开发接口(Function Calling),导致重复劳动,MCP 通过统一协议:

  • 开发者只需写一次 MCP 服务端,所有兼容 MCP 的模型都能调用。
  • 用户无需关心技术细节,大模型可直接操作本地文件、设计软件等。

3.提升安全性与互操作性

  • 安全性:MCP 内置权限控制和加密机制,比直接开放数据库更安全。
  • 生态统一:类似 USB 接口,MCP 让不同厂商的工具能“即插即用”,避免生态分裂。

4.推动AIAgent的进化

MCP 让大模型从“被动应答”变为“主动调用工具”,例如:

  • 自动抓取网页新闻补充实时知识。
  • 打开 Idea 编写一个“Hello World”的代码。

MCP 的诞生,相当于为AI世界建立了“通用语言”,让模型、数据和工具能高效协作,最终释放大模型的全部潜力。

3.MCP组成和执行流程

MCP 架构分为以下 3 部分:

  • 客户端:大模型应用(如 DeepSeek、ChatGPT)发起 MCP 协议请求。
  • 服务器端:服务器端响应客户端的请求,并查询自己的业务实现请求处理和结果返回。

运行流程

  1. 用户提问 LLM。
  2. LLM 查询 MCP 服务列表。
  3. 找到需要调用 MCP 服务,调用 MCP 服务器端。
  4. MCP 服务器接收到指令。
  5. 调用对应工具(如数据库)执行。
  6. 返回结果给 LLM。

4.编写本地MCP服务

接下来,我们使用 Spring AI 来实现本地 MCP 服务器端,它的主要实现步骤如下:

  1. 添加 MCP Server 依赖。
  2. 设置 MCP 配置信息。
  3. 编写 MCP Server 服务代码。
  4. 将 MCP Server 进行暴露设置。

关键实现代码如下。

4.1 添加 MCP Server 依赖

<dependencies>
  <dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-starter-mcp-server-webflux</artifactId>
</dependency>
</dependencies>

<repositories>
<repository>
    <name>Central Portal Snapshots</name>
    <id>central-portal-snapshots</id>
    <url>https://central.sonatype.com/repository/maven-snapshots/</url>
    <releases>
      <enabled>false</enabled>
    </releases>
    <snapshots>
      <enabled>true</enabled>
    </snapshots>
</repository>
<repository>
    <id>spring-milestones</id>
    <name>Spring Milestones</name>
    <url>https://repo.spring.io/milestone</url>
    <snapshots>
      <enabled>false</enabled>
    </snapshots>
</repository>
<repository>
    <id>spring-snapshots</id>
    <name>Spring Snapshots</name>
    <url>https://repo.spring.io/snapshot</url>
    <releases>
      <enabled>false</enabled>
    </releases>
</repository>
</repositories>

MCP Server 依赖有三种类型:

  • 标准输入/输出 (STDIO):spring-ai-starter-mcp-server
  • Spring MVC(服务器发送的事件):spring-ai-starter-mcp-server-webmvc
  • Spring WebFlux(响应式 SSE):spring-ai-starter-mcp-server-webflux

4.2 设置 MCP 配置信息

MCP Server 包含以下配置信息:

配置项描述默认值
enabled启用/禁用 MCP 服务器TRUE
stdio启用/禁用 stdio 传输FALSE
name用于标识的服务器名称mcp-server
version服务器版本1.0.0
type服务器类型 (SYNC/ASYNC)SYNC
resource-change-notification启用资源更改通知TRUE
prompt-change-notification启用提示更改通知TRUE
tool-change-notification启用工具更改通知TRUE
tool-response-mime-type(可选)每个工具名称的响应 MIME 类型。例如,将 mime 类型与工具名称相关联spring.ai.mcp.server.tool-response-mime-type.generateImage=image/pngimage/pnggenerateImage()-
sse-message-endpointWeb 传输的 SSE 终端节点路径/mcp/message

其中 MCP Server 又分为以下两种类型。

服务器类型
  • 同步服务器:默认服务器类型,它专为应用程序中的简单请求-响应模式而设计。要启用此服务器类型,请在您的配置中设置。 激活后,它会自动处理同步工具规格的配置,spring.ai.mcp.server.type=SYNC。
  • **异步服务器:**异步服务器实现使用非阻塞作并针对非阻塞作进行了优化。要启用此服务器类型,请使用配置您的应用程序。此服务器类型会自动设置具有内置 Project Reactor 支持的异步工具规范,spring.ai.mcp.server.type=ASYNC。

4.3 编写MCPServer服务代码

编写天气预报查询伪代码:

import org.springframework.ai.tool.annotation.Tool;
import org.springframework.stereotype.Service;

import java.util.Map;

@Service
publicclass WeatherService {

    @Tool(description = "根据城市名称获取天气预报")
    public String getWeatherByCity(String city) {
        Map<String, String> mockData = Map.of(
            "西安", "晴天",
            "北京", "小雨",
            "上海", "大雨"
        );
        return mockData.getOrDefault(city, "抱歉:未查询到对应城市!");
    }

}

4.4 将服务暴露出去

@Bean
public ToolCallbackProvider weatherTools(WeatherService weatherService) {
return MethodToolCallbackProvider.builder().toolObjects(weatherService).build();
}

这样 MCP Server 就编写完成了。

5.Dify调用本地MCP

Dify 调用 MCP 主要步骤如下:

  1. 安装 MCP 插件。
  2. 配置 MCP 服务 HTTP 地址。
  3. 配置 Agent 相关信息。
  4. 运行测试。

具体配置如下。

5.1 安装 MCP 插件

安装 Agent 策略(支持 MCP 工具)如下图所示:

img

MCP SSE 选装,非必须,可以为后续 Agent 提供 MCP 工具列表,方便 LLM 正确理解和调用工具。

5.2 配置 MCP 服务地址

Dify 只支持 HTTP 协议的 MCP 服务调用,它的配置格式如下:

{
  "server_name1": {
    "transport": "sse",
    "url": "http://127.0.0.1:8000/sse",
    "headers": {},
    "timeout": 50,
    "sse_read_timeout": 50
  },
"server_name2": {
    "transport": "sse",
    "url": "http://127.0.0.1:8001/sse"
  },
"server_name3": {
    "transport": "streamable_http",
    "url": "http://127.0.0.1:8002/mcp",
    "headers": {},
    "timeout": 50
  },
"server_name4": {
    "transport": "streamable_http",
    "url": "http://127.0.0.1:8003/mcp"
  }
}

支持配置多个 MCP 服务,或者是以下 JSON 格式也支持:

{
  "mcpServers": {
      "server_name1": {
        "transport": "sse",
        "url": "http://127.0.0.1:8000/sse",
        "headers": {},
        "timeout": 50,
        "sse_read_timeout": 50
      },
      "server_name2": {
        "transport": "sse",
        "url": "http://127.0.0.1:8001/sse"
      },
      "server_name3": {
        "transport": "streamable_http",
        "url": "http://127.0.0.1:8002/mcp",
        "headers": {},
        "timeout": 50
      },
      "server_name4": {
        "transport": "streamable_http",
        "url": "http://127.0.0.1:8003/mcp"
      }
    }
}

5.3 配置 Agent

Agent 需要配置的项目比较多,首先是 Agent 策略:

img

然后是 LLM,选择合适的大模型即可,之后配置 MCP 工具和 HTTP 地址,如下图所示:

img

之后配置指令和查询问题:

img

5.4 测试 MCP 调用

我们创建的是一个 ChatFlow,执行效果如下:

img

执行符合预期。

小结

Dify 调用 MCP 服务主要依靠的是 HTTP 地址和 MCP 协议,对于用户来说他面向的是大模型,对于程序来说是大模型调用了 MCP 服务,所以大模型端也就是 MCP 的客户端。我们会调用本地 MCP 服务了,那么问题来了,如何调用通用的 MCP 服务呢?

如何学习大模型技术,享受AI红利?

面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,详尽的全套学习资料,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。

无论是初学者,还是希望在某一细分领域深入发展的资深开发者,这样的学习路线图都能够起到事半功倍的效果。它不仅能够节省大量时间,避免无效学习,更能帮助开发者建立系统的知识体系,为职业生涯的长远发展奠定坚实的基础。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

read-normal-img

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

AI大模型时代的转行选择,新风口能否抵御35岁中年危机?_语言模型_02

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

AI大模型时代的转行选择,新风口能否抵御35岁中年危机?_语言模型_03

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

AI大模型时代的转行选择,新风口能否抵御35岁中年危机?_ai_04

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

AI大模型时代的转行选择,新风口能否抵御35岁中年危机?_ai_05

结语

大模型作为新时代的风口,确实为那些希望转行或寻求职业突破的人提供了广阔的舞台。然而,是否选择进入这一领域还需综合考虑自身的兴趣、特长以及长远规划。通过构建基础知识体系、参与实际项目、拓展软技能、关注跨学科融合以及建立广泛的社交网络,你可以在这个充满机遇的新领域中迅速站稳脚跟。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### 将Dify集成到本地模型中的方法 为了实现Dify本地模型的集成,需遵循一系列特定的操作流程来确保两者能够无缝协作。首先,按照官方部署文档指示完成Dify应用开发平台的基础设置[^2]。 #### 准备工作环境 进入`/usr/local`目录,并通过Git工具获取最新的项目源码: ```bash cd /usr/local sudo git clone https://github.com/langgenius/dify.git ``` #### 修改配置文件支持自定义模型路径 在成功安装之后,编辑位于项目的根目录下的`.env.example`文件,将其重命名为`.env`以便于后续修改。在此文件内指定本地模型的位置以及必要的参数调整,使应用程序知晓外部资源的具体位置。 对于大多数情况而言,主要关注以下几个变量: - `MODEL_PATH`: 设置为指向已下载或训练好的本地模型绝对路径。 - `TOKENIZER_PATH`: 如果适用的话,则应指明分词器所在之处;这通常紧挨着模型本身存储在一起。 - `DEVICE`: 明确指出用于推理计算设备(CPU/GPU),依据硬件条件而定。 #### 更新依赖项和服务启动脚本 考虑到版本兼容性和性能优化方面的需求,在实际操作前还需同步更新所有Python包至最新稳定版。接着打开`docker-compose.yml`文件查找有关服务定义的部分,确认镜像标签是否是最新的,并适当增加额外的服务条目用来加载和初始化新加入的大规模预训练语言模型实例。 最后一步就是重启整个容器集群让更改生效: ```bash cd dify docker compose down && docker compose up -d --build ``` 以上步骤完成后,理论上讲应该已经实现了Dify本地已有大型语言模型之间的对接。不过值得注意的是,具体实施细节可能会因为不同框架间的差异有所变化,因此建议参照目标模型提供商给出的技术指南做进一步微调。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值