如今,deepseek 烈火烹油火爆天,有用没用的大家都想看看人工智能到底能干啥。上一次AI 这么出圈,还是 ChatGPT 刚发布的时候。
我相信绝大部分凑热闹的群众用不了多久就会发现,自己除了问一些有的没的脑筋急转弯,并不能拿 deepseek 解决什么实际问题。但这不妨碍热情,特别是海对岸还有人在泼冷水,祭出各种手段让 deepseek 访问受阻。
开源的 deepseek 其实自己在本地就可以部署,有能力的人还能添加联网功能,把官方因屡遭攻击而暂时关闭的能力再加回来。
deepseek 在 huggingface 上完整放出了自己 671b 的模型文件,如果你的资源足够,理论上有可能自建一套 deepseek r1。什么叫资源足够?英伟达的 CEO 黄仁勋对此想法的配置建议是买 8 张他家的 H200 显卡。
完整版的 deepseek r1 需要大量显存,即使使用量化技术压缩到极致的模型,也需要 50G 显存。所谓量化,相当于压缩。量化程度越高,模型生成的结果精度越差。huggingface 上下载的模型,1.5bit,2bit,4bit,6bit,8bit 就是这个意思。bit 前面的数字越小,模型文件越小,精度越差。
这几天国内另一家公司,硅基流动,用华为的显卡部署了完整版 deepseek r1。我用了一下,它家显然接不住泼天的流量,推理速度实在太慢。原本 deepseek r1 的推理过程就会过度纠结在细节上,8-10token/s 的回答生成速度,相当于你用老式按键打字机敲字,太慢了。
其实尝试一下带思维链的 deepseek r1 不用那么复杂,也无需硬上满血版。deepseek r1 是用 deepseek v3 蒸馏出来的模型。deepseek 也用同样的技术蒸馏了好几个小模型,适合本地部署。
蒸馏技术可以理解为老师带学生。r1 是大师哥,其他尺寸小的模型算师弟们。综合能力,师弟不如师哥,但师弟们吃得也少,贫苦人家也能养得起。
deepseek 官方推荐的两个模型,分别是蒸馏阿里通义千问的 14b 和 32b。阿里通义千问模型本身的能力就不错,蒸馏后多了思维链,能力更强。
在 Mac 上,根据内存大小不同,很容易部署上面两个模型。最简单的方法是下载 lm studio,Mac,Windows,Linux 三平台都有客户端。
lm studio 不仅提供客户端,而且有自己量化的模型可供直接下载。我的 Macmini M4Pro 内存 24G,加载 14B的量化版本比较合适。32B 的 4bit 量化版大约 16G 左右,也能加载,但推理速度太慢,小于 10token/s。
我比较了 lm studio 自家的 14b,4bit 模型和下载数更多的第三方量化模型bartowski/DeepSeek-R1-Distill-Qwen-14B-GGUF的 6bit 版本,精度可以接受,速度快很多。
下载很简单,直接在 lm studio 上搜索 deepseek 即可。
lm studio 提供聊天窗口,全图形化操作,加载模型之后,可以直接开启对话。另一个命令行工具 ollama 速度虽然更快,但上手要复杂。
运行效果还是不错的,不联网也能做数学题,编写脚本和 python 程序。
推荐 lm studio 的原因有下面几个:
1. 本地文档聊天
LM Studio 支持与本地文档进行互动,用户可以上传文档(如TXT、PDF、Word等格式),然后与模型进行对话,获取文档中的信息。文件最多 5 个,每个不超过 30M。
2. 多模型同时运行
通过“Playground”模式,LM Studio 支持同时运行多个AI模型,你可以利用不同模型的组合能力来增强性能和输出。例如,可以同时加载一个擅长写作的模型和一个擅长编程的模型,根据需求切换使用。
3. OpenAI 兼容服务器
LM Studio 提供了一个与 OpenAI API 兼容的本地服务器,用户可以通过 HTTP 请求与模型交互。
4. 模型下载与管理
LM Studio 内置了模型发现功能,用户可以从 Hugging Face 等平台搜索和下载兼容的模型。此外,它还支持模型的管理和更新,方便用户随时切换不同的模型版本。
5. 硬件加速与优化
LM Studio 支持多种硬件加速,包括 NVIDIA GPU 和苹果 M 系列芯片。特别是对于 M 系列芯片,LM Studio 提供了经过优化的 MLX 模型,能够充分利用苹果的统一内存架构,提升运行效率。
6. 离线操作与隐私保护
LM Studio 支持完全离线操作,用户可以在不联网的情况下使用模型。这不仅保证了数据的隐私和安全,还避免了网络延迟问题,使得模型运行更加流畅。
如果你想用 lm studio 构建个人知识库,那么它不太合适。更适合的高级玩法可以从下面的组合里寻找:
Ollama + AnythingLLM
Ollama 是一个本地大模型管理工具,支持运行多种大语言模型。
AnythingLLM 是一个开源项目,支持将PDF、Word、网页等多种格式的文件转化为结构化的知识库。它与Ollama集成,可以实现文件加载和知识问答功能。
优点:支持多种文件格式,与Ollama集成方便,适合个人用户快速搭建知识库。
缺点:需要一定的技术基础来搭建和配置环境。
MaxKB + Ollama
MaxKB 是一个开源的本地知识库工具,支持与Ollama集成。
优点:MaxKB提供了简单易用的界面和强大的知识库管理功能,适合个人用户快速搭建和管理知识库。
缺点:需要使用Docker等工具进行部署,对技术要求有一定门槛。
Whoosh + Ollama
Whoosh 是一个纯Python实现的全文搜索引擎,可以用于快速检索本地文件。
方案:结合Whoosh进行文件索引,然后通过Ollama加载大模型进行问答。这种方式可以支持大量本地文件的检索和问答。
优点:Whoosh轻量级且易于集成,适合对性能要求较高的用户。
缺点:需要自行搭建和配置索引系统,对技术有一定要求。
Obsidian
Obsidian 是一款基于Markdown的笔记应用,专注于构建个人知识库。
优点:支持反向链接和图形视图,能够创建互联的知识网络,适合用于知识整理和管理。
缺点:虽然Obsidian本身不直接支持大模型集成,但可以通过插件或外部工具与Ollama等大模型工具结合使用。
1 和 4 比较适合不会编程的人。但总的来说,折腾这一套的时间成本不低,效果嘛,不见得能满足预期。个人知识库受限于两个因素:1. 向量化查询个人知识库的准确程度。2. 大模型的幻觉。
这两条实操的时候需要一定技术能力才能调整到相对满意的程度。如果只是自己的一些记账数据,生活琐事,对大模型了解不多,动手能力一般。不建议入坑。大概率看了半天,喊一句:擦,烦死了。然后结束。
再等半年,OpenAI已经在压力下放出专家版 o3。未来全图形化,一步到位集成个人知识库的解决方案肯定会有。
AI 的重点是提高我们的生活效率而不必掌握复杂的技术,不是反过来。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓