在人工智能领域,Prompt Engineering(提示词工程) 已成为与大型语言模型(LLM)高效交互的关键技术。通过设计结构化、清晰且具策略性的 Prompt,我们可以显著提升模型的输出质量,使其更符合预期任务目标。
本文将为你系统梳理 Prompt Engineering 的核心概念与进阶技巧,结合实际应用案例,帮助你构建高效、稳定且可扩展的 Prompt 体系。
📌 什么是 Prompt Engineering?
Prompt Engineering 是通过精心设计的输入提示,来控制和优化大型语言模型输出的技术方法。它不仅仅是写一句命令,更是结合任务目标、上下文、输出格式及控制参数的综合设计。
随着 GPT、Claude、Gemini 等主流 LLM 的兴起,Prompt Engineering 已逐步成为开发者与 AI 之间高效协作的桥梁。
✅ 来自权威指南:《Prompt Engineering Guide》指出,一个高效的 Prompt 需考虑输出配置、采样控制、上下文建构等多个维度。阅读指南全文[1]
🔧 Prompt 技术体系详解
1. 通用 Prompt 设计原则
适用于大多数任务场景:
-
• 清晰:任务描述不含歧义
-
• 简洁:避免冗长
-
• 具体:明确输入与期望输出的格式和内容
例如:
请将下面这段文本翻译为英文,并保留原文的专业术语。
2. 系统 Prompt 与角色 Prompt
-
• 系统 Prompt:设定 LLM 的行为准则和输出风格(如:语气、格式)
-
• 角色 Prompt:让模型扮演某一角色,从而限定语言风格和知识背景
例如:
你是一位资深的数据科学家,请用简洁的方式解释“过拟合”的概念,面向初学者。
3. 情境式 Prompt
通过设定场景与上下文,引导模型生成更连贯的内容。适合故事创作、客服模拟、多轮对话等任务。
场景:你是某 SaaS 公司客服,客户表示无法登录系统。请礼貌地引导他完成密码重置流程。
⚙️ 高级参数控制策略
Temperature:控制输出“创造性”
-
•
低温度(如 0.2)
→ 更确定、稳健的回答 -
•
高温度(如 0.8)
→ 更多样、富有创意的输出
Top-K & Top-P 采样
-
• Top-K:从概率最高的 K 个词中采样
-
• Top-P (Nucleus Sampling):从累计概率达到 P 的词集中采样
✅ 实际使用中,可结合两者动态控制模型输出的多样性与稳定性。
Max Tokens:控制输出长度
限制最大 token 数量,避免回答过长或内容中断。
✅ Prompt 工程最佳实践
🔹 使用 Few-shot 示例提升准确率
给出 2~3 个输入输出对,引导模型理解任务格式:
任务:将产品描述转换为社交媒体营销文案。
示例1:
输入:一款可自动追踪健康数据的智能手环。
输出:健康生活,从这一刻开始!戴上这款智能手环,24小时守护你的身体状态。
示例2:
输入:轻薄便携的笔记本电脑,适合远程办公。
输出:轻巧不妥协,高效远程办公新选择!
🔹 使用结构化格式书写 Prompt
建议使用 Markdown 提升清晰度:
## 任务
将技术术语解释为面向小学生的语言。
## 示例
输入:神经网络
输出:就像大脑里有很多小灯泡,每个灯泡都帮你记住一点东西,所有灯泡一起工作,就能完成复杂的任务。
🔹 使用变量模板实现批量生成
使用变量化 Prompt 提高可复用性:
请用面向 {{audience}} 的语言解释 "{{concept}}",控制在 100 字以内。
🔁 Prompt 优化策略
-
• 版本迭代:记录 Prompt 变体的表现,持续对比与优化
-
• A/B 测试:验证不同 Prompt 对输出质量的影响
-
• 跟随模型更新:大模型迭代后,旧 Prompt 可能失效,需要重新调试
🧠 多模态与代码类 Prompt 指南
编程相关 Prompt 示例
请用 Python 实现一个快速排序算法,并添加详细注释。
多模态任务设计要点
处理图文、音频、代码混合时,Prompt 需明确指引每种内容的作用与期望输出格式。例如:
请分析下图(附带 URL)的配电图,并用文本总结其功能模块。
📈 结语:Prompt 工程是人与 AI 的协作艺术
优秀的 Prompt 并非一蹴而就,它是一个 “测试 → 反馈 → 调整” 的迭代过程。掌握本文提到的核心技巧,你将大幅提升模型输出质量,为自动化生成、对话系统、代码生成等场景带来实际价值。
让我们从今天开始,把 Prompt 写成艺术品,让大模型成为真正的超级助手!
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓