本文主要介绍如何通过ollama快速部署deepseek、qwq、llama3、gemma3等大模型,网速好的小伙伴10分钟就能搞定。让你摆脱GPU焦虑,在普通电脑上面玩转大模型。
安装指南(无废话版)
第一步:安装ollama
我们可以从官网下载ollama,此步骤支持windows、mac、ubuntu操作系统,此处仅以windows作为演示。
打开ollama官网:https://ollama.com 点击download按钮进行下载,下载完成后点击安装。
安装完成后,你的电脑右下角会有ollama的图标(如果没有看到,可以展开折叠的状态栏检查)
验证安装是否成功:打开命令行(WIN+R
,在运行中输入cmd
后回车),输入ollama --version
,如果命令执行成功,并输出了版本信息,说明安装成功了。
第二步:下载deepseek
打开命令行(WIN+R
,在运行中输入cmd
后回车),下载并运行deepseek-r1 1.5b蒸馏版。
ollama run deepseek-r1:1.5b |
下载完成后,ollama会为我们运行刚下载的大模型。下面是我运行成功的截图:
第三步:使用大模型
恭喜你已经在本地成功安装了第一个私有大模型。运行成功以后,我们可以直接在命令行和deepseek对话。
如你所见,这就是一个简单的对话窗口,也是大模型最原始的形态。
在本系列的后面章节中,我们会介绍如何使用工具来和大模型进行交互,构建专属于你的、数据安全的、私有可定制的AI工具集。
关注[拓荒者IT]公众号,获取最新内容,文末有福利。
内容讲解(干货)
ollama是什么?
Ollama 是一款开源工具,能让你在个人电脑上本地运行各种大语言模型(如 DeepSeek、QwQ等)。
简单说,它像是一个“离线版DeepSeek”,无需联网就能用AI聊天、写代码或处理文档。
下载模型后,电脑断网也能用,数据隐私更有保障。支持命令行操作,开发者能快速测试模型效果,或集成到自己的项目中。
适合技术爱好者、想保护隐私的用户,或需要定制AI功能的人。开源免费,对硬件要求不高,普通电脑也能跑小模型。
ollama常用的指令
命令 | 描述 |
---|---|
ollama serve | 启动 Ollama |
ollama create | 从 Modelfile 创建模型 |
ollama show | 显示模型信息 |
ollama run | 运行模型 |
ollama stop | 停止正在运行的模型 |
ollama pull | 从注册表中拉取模型 |
ollama push | 将模型推送到注册表 |
ollama list | 列出所有模型 |
ollama ps | 列出正在运行的模型 |
ollama cp | 复制模型 |
ollama rm | 删除模型 |
ollama help | 显示任意命令的帮助信息 |
标志 | 描述 |
---|---|
-h, --help | 显示 Ollama 的帮助信息 |
-v, --version | 显示版本信息 |
获取更多模型
在ollama官网,有非常多的开源模型供我们选择,地址:Ollama Search
在模型列表中,我们点击deepseek-r1,打开页面如下:
选择自己电脑适配的模型大小,然后复制右侧的启动命令,在命令行执行即可。
总结
本文介绍了如何使用ollama本地部署DeepSeek等大模型,通过干货分享了ollama常用的指令,以及如何获取更多大模型。
但是我们目前仍然只是在命令行使用大模型,非常的不友好。下一章我们将介绍如何摆脱命令行的束缚,将ollama集成到本地的AI工具中,实现聊天、自定义智能体等功能。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓