Ollama系列01:轻松3步本地部署deepseek,普通电脑可用

本文主要介绍如何通过ollama快速部署deepseek、qwq、llama3、gemma3等大模型,网速好的小伙伴10分钟就能搞定。让你摆脱GPU焦虑,在普通电脑上面玩转大模型。

安装指南(无废话版)

第一步:安装ollama

我们可以从官网下载ollama,此步骤支持windows、mac、ubuntu操作系统,此处仅以windows作为演示。

打开ollama官网:https://ollama.com 点击download按钮进行下载,下载完成后点击安装。

安装完成后,你的电脑右下角会有ollama的图标(如果没有看到,可以展开折叠的状态栏检查)

验证安装是否成功:打开命令行(WIN+R,在运行中输入cmd后回车),输入ollama --version,如果命令执行成功,并输出了版本信息,说明安装成功了。

第二步:下载deepseek

打开命令行(WIN+R,在运行中输入cmd后回车),下载并运行deepseek-r1 1.5b蒸馏版。

 
ollama run deepseek-r1:1.5b

下载完成后,ollama会为我们运行刚下载的大模型。下面是我运行成功的截图:

第三步:使用大模型

恭喜你已经在本地成功安装了第一个私有大模型。运行成功以后,我们可以直接在命令行和deepseek对话。

如你所见,这就是一个简单的对话窗口,也是大模型最原始的形态。

在本系列的后面章节中,我们会介绍如何使用工具来和大模型进行交互,构建专属于你的、数据安全的、私有可定制的AI工具集。

关注[拓荒者IT]公众号,获取最新内容,文末有福利。

内容讲解(干货)

ollama是什么?

Ollama 是一款开源工具,能让你在个人电脑上本地运行各种大语言模型(如 DeepSeek、QwQ等)。

简单说,它像是一个“离线版DeepSeek”,无需联网就能用AI聊天、写代码或处理文档。

下载模型后,电脑断网也能用,数据隐私更有保障。支持命令行操作,开发者能快速测试模型效果,或集成到自己的项目中。

适合技术爱好者、想保护隐私的用户,或需要定制AI功能的人。开源免费,对硬件要求不高,普通电脑也能跑小模型。

ollama常用的指令

命令描述
ollama serve启动 Ollama
ollama create从 Modelfile 创建模型
ollama show显示模型信息
ollama run运行模型
ollama stop停止正在运行的模型
ollama pull从注册表中拉取模型
ollama push将模型推送到注册表
ollama list列出所有模型
ollama ps列出正在运行的模型
ollama cp复制模型
ollama rm删除模型
ollama help显示任意命令的帮助信息
标志描述
-h, --help显示 Ollama 的帮助信息
-v, --version显示版本信息

获取更多模型

在ollama官网,有非常多的开源模型供我们选择,地址:Ollama Search

在模型列表中,我们点击deepseek-r1,打开页面如下:

选择自己电脑适配的模型大小,然后复制右侧的启动命令,在命令行执行即可。

总结

本文介绍了如何使用ollama本地部署DeepSeek等大模型,通过干货分享了ollama常用的指令,以及如何获取更多大模型。

但是我们目前仍然只是在命令行使用大模型,非常的不友好。下一章我们将介绍如何摆脱命令行的束缚,将ollama集成到本地的AI工具中,实现聊天、自定义智能体等功能。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值