毕业设计题目:基于神经网络的雾霾交通标志识别系统
1. 研究背景和意义
- 解释雾霾对交通标志识别的挑战。
- 讨论雾霾对驾驶安全的影响。
- 引入基于神经网络的解决方案,以提高雾霾下交通标志的准确识别。
2. 目标和问题陈述
- 确定设计目标,例如提高雾霾条件下的交通标志识别准确性。
- 描述当前存在的问题,例如传统计算机视觉方法在雾霾条件下的性能下降。
3. 文献综述
- 回顾相关的计算机视觉、神经网络、和雾霾下图像处理的文献。
- 分析先前的方法和技术,以及它们在类似问题上的应用。
4. 系统设计与架构
- 详细说明系统的整体架构。
- 选择合适的神经网络架构,例如卷积神经网络(CNN)。
- 讨论数据集的选择和预处理方法。
5. 数据收集与预处理
- 收集包含雾霾场景的交通标志图像数据集。
- 实施数据预处理技术,以适应神经网络模型的训练需求。
6. 神经网络模型训练
- 针对所选的神经网络模型进行训练。
- 考虑雾霾条件下的数据增强技术,以提高模型的鲁棒性。