haar级联分类器检测人脸位置

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread("23.png")
#获取XML文件,加载人脸检测器
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

#调用函数detecMultiScale
faces = faceCascade.detectMultiScale(gray,scaleFactor = 1.15, minNeighbors = 5,minSize = (5,5))
print(faces)
#打印输出的测试结果
print("发现{0}个人脸!".format(len(faces)))
#逐个标注人脸
for(x,y,w,h) in faces:
    #cv2.rectangle(img,(x,y),(x+w),(y+w),(0,2255,0),2)     #矩形标记
    cv2.circle(img,(int((x+x+w)/2),int((y+y+h)/2)),int(w/2),(0,255,0),2)
#显示结果
cv2.imshow("dect",img)
cv2.waitKey()
cv2.destroyAllWindows()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值