CTA 血管重建,三维重建,血管三维重建 CT三维重建,三维可视化

    CT检查在临床中应用十分广泛,CT以其扫描速度快,对骨头及钙化敏感而具有部分优势。

    CTA是CT血管成像,是CT临床应用中一个非常重要的部分,由于血管及其背景软组织自然对比差,常规CT平扫往往难以显示血管。在行CTA检查的时候,需要引入对比剂,改变血管与背景组织的影像对比,从而突显血管。

    CTA广泛的应用在头颈部血管、心脏冠状动脉、肺动静脉、胸主动脉、腹主动脉、下肢动静脉中。

    其中比较常用的是冠脉CTA及头颈部CTA(经常是配合CTA+CTP一站式解决方案)。

Part1: 实现步骤

在使用 PyQt 和 VTK 进行 CTA(CT 血管造影)血管重建时,通常涉及以下几个步骤:

  1. 加载 CTA 数据:读取 DICOM 格式的 CTA 数据。

  2. 预处理数据:对数据进行预处理,如滤波、降噪等。

  3. 血管分割:使用分割算法(如区域生长、水平集等)提取血管结构。

  4. 三维重建:将分割后的血管数据转换为三维模型。

  5. 可视化:使用 VTK 进行三维可视化,并通过 PyQt 创建用户界面。

以下是一个简单的示例代码,展示如何使用 PyQt 和 VTK 进行 CTA 血管重建和可视化:

Part2:简单实现

import sys
import vtk
from PyQt5 import QtWidgets
from vtk.qt.QVTKRenderWindowInteractor import QVTKRenderWindowInteractor

class CTAVisualization(QtWidgets.QMainWindow):
    def __init__(self, parent=None):
        super(CTAVisualization, self).__init__(parent)

        # 创建 VTK 渲染窗口和交互器
        self.vtkWidget = QVTKRenderWindowInteractor(self)
        self.setCentralWidget(self.vtkWidget)

        # 创建 VTK 渲染器和渲染窗口
        self.renderer = vtk.vtkRenderer()
        self.vtkWidget.GetRenderWindow().AddRenderer(self.renderer)

        # 加载 CTA 数据
        reader = vtk.vtkDICOMImageReader()
        reader.SetDirectoryName("path/to/dicom/files")
        reader.Update()

        # 预处理数据(例如:高斯滤波)
        gaussian = vtk.vtkImageGaussianSmooth()
        gaussian.SetInputConnection(reader.GetOutputPort())
        gaussian.SetRadiusFactors(1, 1, 1)
        gaussian.Update()

        # 血管分割(例如:区域生长)
        seed = (100, 100, 100)  # 种子点坐标
        segmentation = vtk.vtkImageThresholdConnectivity()
        segmentation.SetInputConnection(gaussian.GetOutputPort())
        segmentation.SetSeed(seed)
        segmentation.ThresholdBetween(100, 200)  # 设置阈值范围
        segmentation.ReplaceInOn()
        segmentation.SetInValue(255)
        segmentation.Update()

        # 三维重建(例如:Marching Cubes)
        mc = vtk.vtkMarchingCubes()
        mc.SetInputConnection(segmentation.GetOutputPort())
        mc.SetValue(0, 128)  # 设置等值面值
        mc.Update()

        # 创建映射器和演员
        mapper = vtk.vtkPolyDataMapper()
        mapper.SetInputConnection(mc.GetOutputPort())
        actor = vtk.vtkActor()
        actor.SetMapper(mapper)

        # 添加到渲染器
        self.renderer.AddActor(actor)
        self.renderer.ResetCamera()

        # 设置背景颜色
        self.renderer.SetBackground(0.2, 0.3, 0.4)

        # 初始化交互器
        self.vtkWidget.Initialize()
        self.vtkWidget.Start()

if __name__ == "__main__":
    app = QtWidgets.QApplication(sys.argv)
    window = CTAVisualization()
    window.show()
    sys.exit(app.exec_())

Part3:注意事项:

  • 路径设置:确保 reader.SetDirectoryName("path/to/dicom/files") 中的路径正确指向你的 DICOM 文件目录。

  • 种子点选择:区域生长分割需要设置合适的种子点,通常需要根据具体数据调整。

  • 阈值设置:分割和重建的阈值需要根据具体数据进行调整,以获得最佳效果。

Part4:依赖库:

  • PyQt5

  • VTK

Part5: 实现效果:

CTA重建:脑血管重建,CT三维重建,三维建模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

恋恋西风

up up up

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值