【文献阅读】CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances

该文提出了对比学习的新方法CSI,通过对比分布偏移的实例来提升异常检测效果。研究了如何学习OOD数据的区分性表示和设计评分函数。在保持分类精度的同时,缓解了模型对分布内外样本过度自信的问题,尤其在硬分布偏移的OOD样本中表现出色。
摘要由CSDN通过智能技术生成

课题文献调研

CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances

在上一篇SSD的阅读中提出,在OOD检测中,他的表现不如这篇文章(仅仅是ood检测,别的下游任务的表现还是很棒的),基于自己的工业数据,baseline仅达到了auroc78,所以还需要继续深入探讨如何优化模型


摘要

(1)提出了一个简单有效的方法:contrasting shifted instances(CSI)

(2)除了将给定的样本和其他实例对比之外,还与自身的分布位移作对比

(3)基于这样的训练方案,提出了新的检测分数

Introduction

研究了以下两个问题:

(1)怎样学习到OOD数据的discriminative representation

(2)怎样设计一个评分函数

这和标准的表示学习有区别,即我们的任务是区别OOD数据和ID数据,而表示学习的目的是区别in-distribution samples

点子:

可以通过"hard" augmentations 例如rotation 来提升模型的表现(rotation对于对比学习来说是harmful and unused)
目前的对比学习方案将所有增强的数据拉近到原始的数据,我们提出的方案增加的想法是:将通过“hard or distribution-shifting augmentations”远离原始样本

对比学习基础上的两个新贡献:

(1)新的训练方法:除了将给定样本和其他实例对比外,还和自己的distribution-shifting augmentations进行对比

(2)分数函数,使之融合了对比学习方法和(1)中的方法

研究表明它在保持分类精度的同时,缓解了分类器在预测分布内和分布外样本时的过度自信问题。

CSI在hard(或接近ID分布)的OOD样本中给出了较大的改进*(本人的OOD数据都是很接近真实样本的数据)*

CSI: Contrasting shifted instances

2.1 Contrastive learning

见SimCRL损失函数

2.2 Contrastive learning for distribution-shifting transformations

Chen等人对在SimCLR中使用哪个增广T族导致更好的表示进行了广泛的研究,即,哪些变换应该被认为是阳性的。总的来说,作者报告了一些增强(如旋转),有时会降低SimCLR的鉴别性能。我们的一项重要发现是,可以这种增强视为来自原始样本的“negative”。
在本文中,我们研究了一系列的增强(可以称这种变化为“distribution-shifting transformations”)将其视为negative 应用在SimCLR中用于异常检测。

(1)contrasting shifted instances

S= S 0 , S 1 , . . . , S K − 1 {S_0,S_1,...,S_{K-1}} S0,S1,...,S

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值