课题文献调研
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
在上一篇SSD的阅读中提出,在OOD检测中,他的表现不如这篇文章(仅仅是ood检测,别的下游任务的表现还是很棒的),基于自己的工业数据,baseline仅达到了auroc78,所以还需要继续深入探讨如何优化模型
文章目录
摘要
(1)提出了一个简单有效的方法:contrasting shifted instances(CSI)
(2)除了将给定的样本和其他实例对比之外,还与自身的分布位移作对比
(3)基于这样的训练方案,提出了新的检测分数
Introduction
研究了以下两个问题:
(1)怎样学习到OOD数据的discriminative representation
(2)怎样设计一个评分函数
这和标准的表示学习有区别,即我们的任务是区别OOD数据和ID数据,而表示学习的目的是区别in-distribution samples
点子:
可以通过"hard" augmentations 例如rotation 来提升模型的表现(rotation对于对比学习来说是harmful and unused)
目前的对比学习方案将所有增强的数据拉近到原始的数据,我们提出的方案增加的想法是:将通过“hard or distribution-shifting augmentations”远离原始样本
对比学习基础上的两个新贡献:
(1)新的训练方法:除了将给定样本和其他实例对比外,还和自己的distribution-shifting augmentations进行对比
(2)分数函数,使之融合了对比学习方法和(1)中的方法
研究表明它在保持分类精度的同时,缓解了分类器在预测分布内和分布外样本时的过度自信问题。
CSI在hard(或接近ID分布)的OOD样本中给出了较大的改进*(本人的OOD数据都是很接近真实样本的数据)*
CSI: Contrasting shifted instances
2.1 Contrastive learning
见SimCRL损失函数
2.2 Contrastive learning for distribution-shifting transformations
Chen等人对在SimCLR中使用哪个增广T族导致更好的表示进行了广泛的研究,即,哪些变换应该被认为是阳性的。总的来说,作者报告了一些增强(如旋转),有时会降低SimCLR的鉴别性能。我们的一项重要发现是,可以这种增强视为来自原始样本的“negative”。
在本文中,我们研究了一系列的增强(可以称这种变化为“distribution-shifting transformations”)将其视为negative 应用在SimCLR中用于异常检测。
(1)contrasting shifted instances
S= S 0 , S 1 , . . . , S K − 1 {S_0,S_1,...,S_{K-1}} S0,S1,...,S