机器学习:模型评估

查准率、查全率、F1

对于二分类问题,样本真实类别和模型预测类别有4种组合情况:

  • 真正例(TP),样本为正,模型也判断为正;
  • 假正例(FP),样本为反,模型误判为正;
  • 真反例(TN),样本为反,模型也判断为反;
  • 假反例(FN),样本为正,模型误判为反。

由此引出3个指标:

  • 准确率(accuracy), A = T P + T N T P + F N + F P + T N A=\frac{TP+TN}{TP+FN+FP+TN} A=TP+FN+FP+TNTP+TN,很好理解,正确的样本数除上所有样本数;
  • 查准率(precision), P = T P T P + F P P=\frac{TP}{TP+FP} P=TP+FPTP
  • 召回率(recall,也叫查全率), R = T P T P + F N R=\frac{TP}{TP+FN} R=TP+FNTP

其中查准率和召回率初学者很容易搞混,查准率的思想是“宁可漏抓,不可错抓”,而召回率的思想是“宁可错抓,不可漏抓”。为了读者更好的理解,下面做一些比喻。
查准率就好像医院识别哪些人肿瘤需要开刀;这里就算一些人肿瘤没被识别出来也没关系,反正肿瘤初期对生活没啥影响;而这里更关心的是确诊的人中有哪些是误诊,因为如果没肿瘤却被开刀是很伤身体的。
召回率就好像你去图书馆找东野圭吾的所有小说;管理员从1万本书中给你挑出了100本,这时就算100本中有50本不是无野圭吾的你也不会太生气,因为你可以自己进行二次筛选;而这里你更在意的是图书馆剩下9900本书中还有没有漏选的书。

当我们调节模型参数时, P P P R R R往往相互“矛盾”,提高一者必导致另一者下降,如果有一个模型的 P P P R R R都很高,那这模型一定很优秀。

为了全面评估模型好坏,我们要综合考虑 P P P R R R的值,为此我们引入 F 1 F1 F1度量
F 1 = 2 × P × R P + R F1=\frac{2 \times P \times R}{P+R} F1=P+R2×P×R
F 1 F1 F1其实是 F β F_\beta Fβ β = 1 \beta = 1 β=1的特殊情况
F β = ( 1 + β 2 ) × P × R ( β 2 × P ) + R F_{\beta}=\frac{\left(1+\beta^{2}\right) \times P \times R}{\left(\beta^{2} \times P\right)+R} Fβ=(β2×P)+R(1+β2)×P×R
在不同应用场景中我们对 P P P R R R的重视程度不同,可以调节 β \beta β参数实现,当 β &gt; 1 \beta \gt 1 β>1 R R R有更大影响,当 0 &lt; β &lt; 1 0 \lt \beta \lt 1 0<β<1 P P P有更大影响。

ROC曲线

ROC曲线下方的面积叫做AUC,该面积越大则模型越好。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值