凸优化中的数学基础知识(范数篇一)内积,欧式范数

#凸优化中的数学基础知识(范数篇一)
##内积,Euclid范数和夹角
定义在 n n n维实向量集合 R n R^n Rn上的标准内积,对任意的 x , y ∈ R n x,y \in R^n x,yRn
&lt; x , y &gt; = x T y = ∑ 1 n x i y i &lt;x,y&gt;=x^Ty=\sum_1^nx_iy_i <x,y>=xTy=1nxiyi,
下面我们都将采用 x T y x^Ty xTy代替 &lt; x , y &gt; &lt;x,y&gt; <x,y>.向量的Euclid范数,或者 ℓ 2 \ell_2 2范数,定义为
∥ x ∥ 2 = ( x T x ) 1 / 2 = ( x 1 2 + . . . + x n 2 ) 1 / 2 \|x\|_2=(x^Tx)^{1/2}=(x_1^2+...+x_n^2)^{1/2} x2=(xTx)1/2=(x12+...+xn2)1/2
对于任意的 x , y ∈ R n x,y \in R^n x,yRn,Cauchy-Schwartz不等式,是 ∣ x T y ∣ ≤ ∥ x ∥ ∥ y ∥ |x^Ty|\le\|x\|\|y\| xTyxy,两个非零向量 x , y ∈ R n x,y \in R^n x,yRn之间(无符号)的夹角定义为
∠ ( x , y ) = a r c c o s ( x T y ∥ x ∥ ∥ y ∥ ) \angle(x,y)=arccos(\frac{x^Ty}{\|x\|\|y\|}) (x,y)=arccos(xyxTy),
其中我们先取 a r c c o s ( u ) ∈ [ 0 , π ] arccos(u) \in [0,\pi] arccos(u)[0,π]. 如 果 x T y = 0 , 我 们 称 x 和 y 正 交 如果x^Ty=0,我们称x和y正交 xTy=0,xy.
y = 0 y=0 y=0时,结论显然成立,当 y y y不等于0时,对于 ∀ λ ∈ R \forall \lambda\in\Bbb R λR可知 0 ≤ ⟨ x − λ y , x − λ y ⟩ 0\le\langle x-\lambda y,x-\lambda y\rangle 0xλy,xλy = ⟨ x − λ y , x ⟩ − λ ⟨ x − λ y , y ⟩ =\langle x-\lambda y,x\rangle-\lambda\langle x-\lambda y,y\rangle =xλy,xλxλy,y = ⟨ x , x ⟩ − λ ⟨ x , y ⟩ − λ ( ⟨ x , y ⟩ − ⟨ λ y , y ⟩ ) =\langle x,x\rangle-\lambda\langle x,y\rangle-\lambda(\langle x,y\rangle-\langle\lambda y,y\rangle) =x,xλx,yλ(x,yλy,y) = ∥ x ∥ 2 − λ ⟨ x , y ⟩ − λ ( ⟨ x , y ⟩ − λ ∥ y ∥ 2 ) =\|x\|^2-\lambda\langle x,y\rangle-\lambda(\langle x,y\rangle-\lambda\|y\|^2) =x2λx,yλ(x,yλy2) 令 λ = ⟨ x , y ⟩ ∥ y ∥ − 2 令\lambda=\langle x,y\rangle\|y\|^{-2} λ=x,yy2,则后面括号内的一项为0,不等式化为:
0 ≤ ∥ x ∥ 2 − ⟨ x , y ⟩ 2 ∥ y ∥ − 2 0\le\|x\|^2-\langle x,y\rangle^2\|y\|^{-2} 0x2x,y2y2
因此有 ∣ ⟨ x , y ⟩ ∣ ≤ ∥ x ∥ ∥ y ∥ |\langle x,y\rangle|\le\|x\|\|y\| x,yxy,这是实空间的推导,很容易推广到复空间,只需要在推导时取部分项取共轭。
定义在 m × n m\times n m×n实矩阵集合 R m × n R^{m\times n} Rm×n上的标准内积为,对于 ∀ X , Y ∈ R m × n , \forall X,Y \in R^{m\times n}, X,YRm×n, ⟨ x , y ⟩ = t r ( X T Y ) = ∑ i = 1 n ∑ j = 1 n X i j Y i j . \langle x,y\rangle=tr(X^TY)=\sum_{i=1}^n\sum_{j=1}^nX_{ij}Y_{ij}. x,y=tr(XTY)=i=1nj=1nXijYij. 此 处 t r 表 示 矩 阵 的 迹 , 即 对 角 元 素 之 和 。 我 们 用 符 号 t r ( X t Y ) 代 替 ⟨ x , y ⟩ . 两 个 矩 阵 的 向 量 实 际 上 就 是 将 矩 阵 的 元 素 按 一 定 的 顺 序 排 列 后 所 生 成 的 R m n 中 相 应 向 量 的 内 积 。 此处tr表示矩阵的迹,即对角元素之和。我们用符号tr(X^tY)代替\langle x,y\rangle.两个矩阵的向量实际上就是将矩阵的元素按一定的顺序排列后所生成的R^{mn}中相应向量的内积。 trtr(XtY)x,y.Rmn
矩阵 X ∈ R m × n 的 F r o b e n i u s 范 数 定 义 为 X\in R^{m\times n}的Frobenius范数定义为 XRm×nFrobenius ∥ X ∥ F = ( t r ( X T X ) 1 / 2 = ( ∑ i = 1 m ∑ j = 1 n X i j 2 ) 1 / 2 \|X\|_F=(tr(X^TX)^{1/2}=(\sum_{i=1}^m\sum_{j=1}^nX_{ij}^2)^{1/2} XF=(tr(XTX)1/2=(i=1mj=1nXij2)1/2 F r o b e n i u s 范 数 实 际 上 就 是 将 矩 阵 的 稀 疏 按 一 定 顺 序 排 列 后 所 生 成 的 相 应 向 量 的 E u c l i d 范 数 Frobenius范数实际上就是将矩阵的稀疏按一定顺序排列后所生成的相应向量的Euclid范数 FrobeniusEuclid
下一节我们会介绍范数,距离以及单位球。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值