【数值优化之范数与导数】

欢迎大家关注我的B站:

偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com)

本文参考书籍《最优化计算方法》

这一部分会介绍一些最优化需要用到的基本数学概念。

目录

1 范数

1.1 向量范数

1.2 矩阵范数

1.3 矩阵内积

2 导数

2.1 梯度与海瑟矩阵

2.2 矩阵变量函数的导数


1 范数

1.1 向量范数

范数相当于是从向量空间到实数域的映射,也就是度量向量与原点之间的距离,但是这里有很多不同的范数,1范数就相当于是曼哈顿距离,2范数相当于欧几里得距离,无穷范数就相当于闵氏距离。

一般来说,下标省略的范数,默认是2,如下是范数2时的常用的Cauchy不等式

                                                               \left | a^{T} b\right |\leq \left \| a \right \|\left \| b \right \|

等号仅当两个向量线性相关的时候取到

1.2 矩阵范数

知道了向量范数之后,就比较好理解矩阵范数了,显然当1范数时

                                                            \left \| A \right \|_{1}=\sum_{i=1}^{m}\sum_{j=1}^{n}\left | a_{ij} \right |

也就是矩阵所有元素的绝对值之和

2范数也就是矩阵所有元素的平方和开根号

                                                \left \| A \right \|_{2}=\sqrt{Tr(AA^{T})}=\sqrt{\sum_{i,j}^{}a_{ij}^{2}}

Tr 称为矩阵的迹,是矩阵主对角线元素之和,矩阵的2范数有正交不变性,对任意正交矩阵U和V

\left \| UAV \right \|_{2}^{2}=Tr(UAVV^{T} A^{T}U^{T})=Tr(UAA^{T}U^{T})=Tr(AA^{T}U^{T}U)

=Tr(AA^{T})=\left \| A\right \|_{2}^{2}

除了从向量范数的定义规律来推广以外,矩阵范数还可以从向量范数诱导而来 

\because \left \| Ax \right \|_{(m)}\leq \left \| A \right \|_{(m,n)}\left \| x \right \|_{n}

这个性质被称为矩阵的相容性

\therefore \left \| A \right \|_{(m,n)}=max\left \| Ax \right \|_{(m)} ,x\in R^{n},\left \| x \right \|_{n}=1

1.3 矩阵内积

矩阵范数用来衡量大小,矩阵内积一般用来表示两个矩阵之间的夹角(也可理解为两个矩阵所张成空间的夹角)

\left \langle A,B \right \rangle=Tr(AB^{T})=\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}b_{ij}

同时也有矩阵范数的柯西不等式

\left \langle A,B \right \rangle\leq \left \| A \right \|_{F}\left \| B \right \|_{F}

2 导数

2.1 梯度与海瑟矩阵

 上面的公式其实就是:方向导数等于梯度与方向单位向量的内积

其实这代表着 f(x) 的增长速度不能超过二次函数 

2.2 矩阵变量函数的导数

多元函数梯度的定义可以推广到矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无意2121

创作不易,多多支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值