欢迎大家关注我的B站:
偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com)
本文参考书籍《最优化计算方法》
这一部分会介绍一些最优化需要用到的基本数学概念。
目录
1 范数
1.1 向量范数
范数相当于是从向量空间到实数域的映射,也就是度量向量与原点之间的距离,但是这里有很多不同的范数,1范数就相当于是曼哈顿距离,2范数相当于欧几里得距离,无穷范数就相当于闵氏距离。
一般来说,下标省略的范数,默认是2,如下是范数2时的常用的Cauchy不等式
等号仅当两个向量线性相关的时候取到
1.2 矩阵范数
知道了向量范数之后,就比较好理解矩阵范数了,显然当1范数时
也就是矩阵所有元素的绝对值之和
2范数也就是矩阵所有元素的平方和开根号
Tr 称为矩阵的迹,是矩阵主对角线元素之和,矩阵的2范数有正交不变性,对任意正交矩阵U和V
除了从向量范数的定义规律来推广以外,矩阵范数还可以从向量范数诱导而来
这个性质被称为矩阵的相容性
1.3 矩阵内积
矩阵范数用来衡量大小,矩阵内积一般用来表示两个矩阵之间的夹角(也可理解为两个矩阵所张成空间的夹角)
同时也有矩阵范数的柯西不等式
2 导数
2.1 梯度与海瑟矩阵
上面的公式其实就是:方向导数等于梯度与方向单位向量的内积
其实这代表着 f(x) 的增长速度不能超过二次函数
2.2 矩阵变量函数的导数
多元函数梯度的定义可以推广到矩阵