文章链接:https://blog.csdn.net/q_z_r_s
机器感知一个专注于SLAM、三维重建、机器视觉等相关技术文章分享的公众号
|
1. 函数原型:
void blur(InputArray src, OutputArray dst, Size ksize, Point anchor=Point(-1,-1), int borderType=BORDER_DEFAULT )
参数说明:
- src – 输入图像.
- dst – 输出图像.
- ksize –模糊核大小.
- anchor – 原点位置,Point(-1,-1)表示原点在中间.
- borderType – 边界使用的图像外部外插像素模式.
数学原理:
注:blur(src, dst, ksize, anchor, borderType)等价于boxFilter(src, dst, src.type(), anchor, true, borderType)
2. 函数原型:
void GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY=0, int borderType=BORDER_DEFAULT )
参数说明:
- src –输入图像.
- dst – 输出图像.
- ksize – 高斯核大小. 长和宽必须为奇数.
- sigmaX – X方向的标准差.
- sigmaY – Y方向的标准差.
- borderType – 边界使用的图像外部外插像素模式.
3. 函数原型:
void boxFilter(InputArray src, OutputArray dst, int ddepth, Size ksize, Point anchor=Point(-1,-1), bool normalize=true, int borderType=BORDER_DEFAULT )
参数说明:
- src – 输入图像.
- dst – 输出图像.
- ddepth – 输出图像类型.
- ksize – 核的大小.
- anchor – 原点位置,Point(-1,-1)表示原点在中间.
- normalize – 是否归一化.
- borderType –边界使用的图像外部外插像素模式.
数学原理:
4. 函数原型:
void medianBlur(InputArray src, OutputArray dst, int ksize)
参数说明:
- src – 输入图像.
- dst – 输出图像.
- ksize – 核大小,且必须为奇数,比如1,3, 5, 7 ...
5. 函数原型:
void Sobel(InputArray src, OutputArray dst, int ddepth, int dx, int dy, int ksize=3, double scale=1, double delta=0, int borderType=BORDER_DEFAULT )
参数说明:
- src – 输入图像.
- dst – 输出图像.
- 数据类型如下–:
- src.depth() = CV_8U, ddepth = -1/CV_16S/CV_32F/CV_64F
- src.depth() = CV_16U/CV_16S, ddepth = -1/CV_32F/CV_64F
- src.depth() = CV_32F, ddepth = -1/CV_32F/CV_64F
- src.depth() = CV_64F, ddepth = -1/CV_64F
当ddepth=-1,输出图像和源图像类型相同;当是8-bit图像时,导数会被截断.
- xorder – x导.
- yorder – y导.
- ksize – 核大小.
- scale – 可选尺度因子;默认情况下不使用.
- delta – 可选delta值.
- borderType – 边界使用的图像外部外插像素模式.
6. 函数原型:
void Laplacian(InputArray src, OutputArray dst, int ddepth, int ksize=1, double scale=1, double delta=0, int borderType=BORDER_DEFAULT )
参数说明:
- src – 输入图像.
- dst –输出图像.
- ddepth – 数据类型.
- ksize – 核大小.
- scale – 可选尺度因子;默认情况下不使用.
- delta – 可选delta值.
- borderType –边界使用的图像外部外插像素模式.
数学原理: